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ABSTRACT

The vertical structure of the height and wind fields associated with the sea-
sonal, interannual, and intraseasonal cycles is documented by making use of global
ECMWF operational analyses for seven pressure levels (1000- 100 mb) and spanning
a 10 year period (1980-89). The role of tropical convection is examined for each of
these time scales.

The seasonal cycle is described through the structure of the geopotential height
field standing waves, the vertical structure of the first seven wavenumbers of the
rotational and divergent winds, and latitude/time cross-sections for the vertical
structure of the planetary waves. The change in the vertical structure from the
internal mode combinations found in the tropics to a dominant external mode of
the extratropics occurs rapidly and within 10° of the convective source regions.
Extensive use is made of a primitive equation (PE) model, as a diagnostic tool,
to explore the extent to which tropical heating might influence the extratropical
vertical structure. The PE response indicates the possibility that 25-40% of the
Northern Hemisphere and 30-55% of the Southern Hemisphere kinematic vertical
structure could be the result of tropical heating.

Two significant El Nifio 'Southern Oscillation (ENSO) events occur during this
10 year period and their vertical structures are examined. The cold phase is found
to be dominated by higher internal modes than the warm phase. This may be linked
to different air-sea interactive processes during cold and warm ENSO phases. The
tie to tropical convection is also seen in the PE model response which shows wave
trains and zonal wind maxima moving westward from the warm to cold phase of

the ENSO events, consistent with observations.



The intraseasonal oscillation, as found in the near-equatorial 200 mb velocity po
tential, is composited for three seasons. A link between this oscillation and tropica
convection is only clearly established during the convective phase, when convectiv.
activity is present across the Wesfern Pacific and Indian Oceans. Composite case
for each season are selected to be in phase with one another and during times whe;
the convective phase of the intraseasonal oscillation is strong. It is found that
when convective regions in the composites are collocated with those present in th
seasonal average, the kinematic vertical structure is dominated by the two deepes
vertical modes. This is different for other locations, where the convection in th
composites does not coincide with regions of convection in the seasonal average. I

this case the kinematic vertical structure favors higher internal modes.
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CHAPTER 1

INTRODUCTION

A long-term global description of the atmosphere has become feasible only in the
past decade, following the Global Weather Experiment (GWE), and the concurrent
emergence of global analysis and forecast models. Much of this experience was
a learning process that led to increasingly realistic data assimilation schemes and
produced an awareness of the potential utility and major limitations of the cur-
rent observation-analysis system. Diagnostic studies of atmospheric motions have
contributed significantly to these rapid developments.

The description of atmospheric motions in terms of longitudinally asymmetric
states has proved fruitful in the past to interpret observed atmospheric structures
in terms of linear wave theory. The common practice has been to project data into
zonal Fourier modes, and differentiate their stationary and transient components
through Fourier analysis in time (such as in the studies of Deland 1964; Horn
and Bryson 1963; Julian 1966; Wiin-Nielsen 1967; Kao and Wendell 1970; Hayashi
1971). Others have studied the horizontal two-dimensional spectra as represented
by spherical harmonics (e.g.. Eliasen and Machenhauer 1965, 1969; Paegle and
Baker 1982; Nogués-Paegle et al. 1986).

Decomposition of the observed vertical variance has received relatively less at-
tention. Holmstrom (1963) determined the empirical orthogonal functions of at-
mospheric data and found that much of the vertical variance can be explained by

the first few vertical modes, while Wiin-Nielsen (1971a and b) studied the time




behaviour of long waves for various vertical structures. More recent investigations
have projected atmospheric data into Hough functions and determined their vertical
structures (Kasahara and Puri 1981; Tanaka 1985; Nogués-Paegle et al. 1989;
Tanaka and Kung 1988, 1989). The main conclusion of these studies is that the
Rossby modes exhibit dominant barotropic structure in the kinetic energy, while
the available potential energy of the Rossby modes and both energy forms for the
gravity modes exhibit vertically reversing circulations about a mid-atmospheric
level.

Observational findings have also been reported regarding prevailing barotropic
and baroclinic structures for different regions (e.g., Blackmon et al. 1979, for the
Northern Hemisphere (NH), van Loon and Jenne 1972, for the Southern Hemisphere
(SH), and Silva Dias and Bonatti 1985, for the tropics). Blackmon et al. (1979)
describe the tendency for atmospheric me*inns in the NH to display barotropic
structures in the eastern oceans and more baroclinic structures in the interior of
continents. In the SH, van Loon and Jenne (1972) find nearly barotropic structures
for long waves, while Silva Dias and Bonatti (1985) point out the vertically re-
versing structure over tropical South America. Projections on low-order spherical
harmonics by Paegle and Baker (1982) and Nogués-Paegle et al. (1986) showed
the baroclinic contributions of the tropics to be dominant throughout the globe
when long meridional and zonal length scales are considered. Results from these
and other studies can be summarized as follows: the tropics in general exhibit
vertically reversing (baroclinic) structures, whereas mid-latitudes display equivalent
barotropic variations. This general description focuses on two vertical modes, and
much of the work cited above has been conducted for special or reduced data
sets. The 10 years of post-GWE data, currently available from the European
Centre for Medium-range Weather Forecasts (ECMWF), is well suited to explore

the horizontal variations of other vertical modes and to differentiate the vertica




structure of rotational and divergent motions. These data are used in the research
to determine the latitudinal range for which different vertical modes dominate the
vertical variance for three low-frequency time scales — the seasonal, interannual,
and intraseasonal.

The characteristics of the seasonal cycle are obtained by computing monthly
averages for 10 years of data for all variables and levels. These averages filter
out freely propagating modes and, therefore, the seasonal changes represent the
atmospheric response to the seasonal shift of atmospheric energy sources. Such
response depends on the zonal wavenumber and varies based on whether the forcing
is located at the lower levels, as for sensible heating, or at mid-atmospheric levels,
as for diabatic heating (e.g., Dickinson 1980; Geisler and Stevens 1982; Silva Dias
et al. 1983).

The seasonal changes do not follow a simple meridional translation with the sun
due partly to the distribution of oceans and continents on the earth surface and the
seasonal changes of sea surface temperatures (SSTs). Horel (1982) documented the
changes in SST in the eastern equatorial Pacific, and showed that, within the tongue
of cool surface waters which extends westward from the South American coast, the
maximum temperature occurs during March. This maximum decreases in ampli-
tude as it moves westward. The westward progression of the SST is accompanied
by high/low pressure to the west/east of the SST maximum, weakening the surface
easterlies and producing wind-stress convergence over the SST maximum (Meehl
1990). Even small changes in SST anomalies near the equator may lead to the
release of large amounts of diabatic heat and if SSTs are warm enough convection
can be generated. This has been observationally confirmed by Gutzler and Wood
(1990) who found significant correlations between monthly averaged SSTs and
outgoing longwave radiation (OLR) in a broad horse-shoe pattern centered around

the equator, east of the dateline, in the eastern Pacific. These studies indicate




that a better understanding of the seasonal cycle may be gained by decomposing
the wind in its divergent and rotational components and relating these variables to
OLR data.

The seasonal changes away from the equator can be more readily linked to
changes in the insolation at the earih’s surface. Warm continents during summer
are characterized by monsoonal circulations with low pressure at the surface and
high pressure at upper levels, and a reversed structure during winter. It is then
apparent that a complete picture of the seasonal change requires documentation
of the vertical structure of the atmosphere that is capable of capturiqg differences
over continents and oceans. Such descriptions should also discriminate the different
structures of the deep tropics of the western and eastern Pacific.

The analysis of the 12 months of data permits contrasting the transition from
northern winter to spring with that from fall to winter. Fleming et al. (1987) have
quantified differences in these two transition stages for the NH and shown that the
spring position of the subtropical jet is located 5-10° equatorward of the fall position
and that this jet is twice as intense in spring. The tropical rain belt is also about 5-
10° further south in spring than in fall, which may partly explain the higher values of
the zonal wind. Horel et al. (1989) have also studied the different seasonal transition
from summer-to-winter and winter-to-summer over South America. Furthermore
Meehl (1987) points out that the convective maximum that moves southeastwardly
from the Asian continent from northern summer to winter is stronger than it is in it
return northwestwardly path from winter to summer. This diagonal movement o
the convection is attributed to the geography of the Indian-Australian region, anc
the differences in the convective patterns in the transition regions may be due t«c
the Australian monsoon during northern winter. The expansion of the convectior

further east into the Pacific during spring results in less convection over Southeas

Asia (Meeh! 1987) than during fall.
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Though these investigations have described important characteristics of the
climatology of the seasonal cycle, questions still remain orn causes of observec
interannual variations of the seasonal cycle and on reasons for the difference:
between the intermediate seasons. The studies of Nogués-Paegle et al. (1986) anc
Nogués-Paegle and Mo (1987) during the two Special Observing Periods (SOP) o
the GWE show that, for the seasonal and intraseasonal cycle, planetary scales tha
are vertically reversing dominate the adjustment of the flow to the changing heating
sources. Nogués-Paegle and Mo (1987) concluded that the seasonal transition fron
spring to summer occurred abruptly, with pronounced excitation of planetary scale
flows both in the velocity potential and the streamfunction. They also linked the
transition to the 30-60 day oscillation, showing that the passage of the eastwarc
propagating velocity potential disturbance over South America appears to trigge:
the displacement of negative OLR anomalies from their South America location i1
austral fall.

The relationship between organized tropical convection, divergent motions anc
subtropical zonal winds was also studied by Nogués-Paegle and Zhen (1987) whe
linked the strength of the Australian subtropical jet with divergent flows emanating
from the Asian monsoon region.

Important elements of this linkage include regional and temporal variation:
of Hadley cells and possible teleconnection between high and low latitudes (e.g.
Simmons 1982; Kasahara and Silva Dias 1986; Lim and Chang 1986; Garcia anc
Salby 1987). Some of these studies link an external mode response of mid-latitude
with the baroclinic tropical structures excited by diabatic heating through th
vertical shear of the basic state. A few recent observational studies have investigate«
the applicability of these linearized models for limited data sets (Mechoso anc
Hartmann 1982; Randel et al. 1987; Nogués-Paegle and Zhen 1987; Ziemke an«
Stanford 1990).




The global character of these tropical-extratropical connections conld not he
diagnosed in detail before the GWE due to the nondivergent assumptions intro
duced in gridded global analyses. The current investigation will study the globa
characteristics of low frequency oscillations for th> 1980-1989 ECMWF griddec
analyses that have been strongly promoted by ECMWF to represent the mos:
advanced, stable assimilation system.

In general, the three main goals of this study are: 1) to describe the vertica
structure of divergent motions for seasonal and low-frequency motions associatec
with tropical convection, 2) to quantify the turning latitude where the vertical struc
ture of observed rotational motions changes from the internal structures, typical o
tropically forced motions, into the equivalent barotropic patterns of mid-latitude:
and 3) to assess how much of the seasonal and low-frequency extratropical structure
is due to atmospheric response to tropical heating.

The remainder of this paper is organized in the following manner. Chapter :
will discuss the data and diagnostic methods. Chapter 3 will examine the seasona
cycle, first in terms of reviewing the zonally- and meridionally-averaged wind anc
how they relate to convection. The seasonal wave cycle will be described in the
geopotential height field through its zonally asymmetric component, averaged fo:
each season, and through use of Fourier analysis. Following this the divergen
and rotational wind components will be used to describe the vertical structure
The seasonal march of selected waves and their vertical mode amplitude will be
displayed in Hovméller diagrams. Lastly in this chapter, two numerical models, on
a linear shallow water wave equation model, and the second, a nonlinear three-leve
PE model, are used to determine the influence of tropical heating on extratropica
wave response.

In Chapter 4, the interannual changes associated with ‘he ENSO and the in

traseasonal variations containing the 30-60 day oscillation will be discussed. Th




differences and similarities of the warm and cold phases of the 1983 and 1987 ENS(
events will be discussed, as weil as their vertical structure and relation to convectior
As with the seasonal cycle, mode] simulations will be used to determine how muc
of the atmospheric response at midlatitudes, as suggested by this particular mode
can be attributed to tropicsl influences. Finally, the intraseaconal oscillations wi
be examined by determining; the details of the divergent winds of pentad composite:
The composites are made for times when the intraseasonal signal, as shown in th
200 mb velocity potential, was easily seen and the atmosphere was convectivel
active. These pentads are made for the transition season, summer monsoon, an
NH winter. In conclusion, Chapter 5 will discuss the major findings and results ¢

this paper.




CHAPTER 2

DATA AND METHODOLOGY

2.1 Data

The data used in this research are from the archives of the National Center for
Atmospheric Research (NCAR), Scientific Computing Division. The data originate
from the European Centre for Medium-range Weather Forecasts (ECMWF) and are
stored at NCAR for use by the atmospheric research community. The data consist
of twice daily (0000 and 1200 GMT) fields of six variables at seven isobaric levels
on a global 2.5° » 2.5° grid. The six meteorological variables include the height
(z), temperature (T), zonal wind component (u), meridional wind component (v),
relative humidity (RH), and vertical motion {(w), while the levels are, from bottom
to top, 1000, 850, 700, 500, 300, 200, and 100 mb. The grid used to store the
information results in an array, for each variable at each level, which contains 144
x T3 grid points.

The ECMWF assimilation system used to acquire these data has undergone
many changes and improvements during the last decade. These changes and their
eflects have been reported in many conferences and journals. Uppala (1986) and
Shaw et al. (1987) have documented the effect of changes from 1980 through 1985,
while Trenberth and Olson (1988) have summarized some of the major changes at
ECMWEF since 1979. Of the 36 model changes reported by the latter, only a few
may significantly affect the tropical divergent motions currently being examined (see
Table 2.1). As an example, on May 1, 1985 the T106 spectral model replaced the

T63, along with substantial changes to the Kuo convection scheme, the addition of



Table 2.1. Changes in the analyses at ECMWF after 1980 which might affect
tropical divergent motions (extracted {rom Trenberth and Dlson, 1988).

Date Summary of change
May 1, 1985 T106 spectral model introduced with substantial cl.anges
to physical parameterization (clouds, convection,
condensation).

March 4, 1986 | Initialization modified to preserve tidal waves.
July 15, 1986 | Gravity wave drag introduced into model.

January 26, 1988 | Divergent structure functions introduced to mass and
wind field analyses.

shallow convection, and changes in cloud representation. As a result, more realistic
Hadley cells resulted, with strengths 50% larger than those of 1984 analyses for the

same season.

2.2 Methodology

This study used the available ECMWF data set for the 10 year period from
January 1, 1980 through December 31, 1989. The 30+ magnetic tapes were reduced
by computing 5-day means using the daily mean for the 0000 and 1200 GMT time
periods. This averaging process removes the diurnal cycle and filters out much
of the high-frequency, synoptic-scale variability. Also, monthly means (12 monthly
averages for each year of the 10 year period) and decade monthly means (12 monthly
averages for the entire 10 year period) were obtained to quantify the seasonal cycle.
Results were obtained from Fourier analyses and by projecting the rotational and
divergent wind components onto vertical structure functions as described below. A
linear shallow water equation model and a nonlinear primitive equation model were

used to interpret results. These are also discussed in the following cections.
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2.2.1 Fourier Transforms

As described in the introduction, the purpose of this research is to determine the
latitudinal range for which different vertical modes dominate the vertical variance,
both as a function of longitude and zonal wavenumber. The contributions by
different zonal wavenumbers were obtained using fast Fourier transform algorithms
(FFT).

Application of Fourier analyses requires expansion of the variable S, at longitu-

dinal grid points [ in a Fourier series as follows:

n-1 .
Si= Y S (2.1)

k=-n

where S; are the complex Fourier coefficients, such that Sy = S";! where the

asterisk denotes the complex conjugate, and
h= = Y SR (2.2)

where N = 2n is the total number of grid points in the longitudinal direction. Also,
the mean square value is given by

1

3
I

%7 z(s;",,, +§82 )+ 824 82, (2.3)

IIM

where S,2, is the component for the last wavenumber, n, and S,% is the square of the

zonal mean. For the variance,

1 n—1
02 = _ﬁ ( SU) - 2 Z mr + szm * (24)

I=-n m=

To use the FFT algorithms to describe the seasonal cycle, it is required that the
original 2.5° x 2.5° decade monthly mean data be interpolated from the 144 x 73
grid to a 128 x 73 grid. This yields 2" grid points in the longitudinal direction
which is a requirement for the FFT. Each latitude band is passed through the FFT

and the resulting contribution by wavenumber, in terms of the amplitude and phase
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of the given variable, can then be determined. With 128 grid points on input, the
FFT yields information on the contribution of wavenumbers up to and including
wavenumber 64, though most of the zonal variance is contained in the first 7-10

waves.

2.2.2 Normal Mode Vertical Structure Decomposition

The vertical structure of the flow is determined by projecting wind components
onto vertical structure functions obtained from the solution of a linear primitive
equation model. This techniq:e orfers at least two distinct advantages over single
level analyses. First, the contribution from each vertical mode is distinguishable
from all others (Kasahara 1978). This is helpful for applications which use linear
models with a single vertical mode. Second, as a diagnostic tool, normal mode
decomposition allows for discrimination between atmospheric structures which are
and are not altered by the assimilation model (Nogués-Paegle et al. 1989), because
initialization systems used in operational environments usually only adjust certain
vertical modes.

Initially, the Poisson equations for vorticity and divergence are solved for the
streamfunction and velocity potential by the method of Paegle and Tomlinson
(1975), and from these the zonal and meridional components of the rotational and
divergent wind are obtained. These data are then transformed from pressure to
sigma coordinates so they may be projected onto the vertical modes in a terrain-
following coordinate system.

At each grid point, these parameters are then projected onto the vertical struc-
ture functions referred to in the previous paragraph. This method is the same as
that of Nogués-Paegle et al. (1989). In this study, the normal mode computer codes
developed by Errico (1987a, 1987b) are used. Grid point values are projected onto

the vertical structure functions as:
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{Z} = é‘bw* {ZEQ%}\/J’T (2.5)

where 1 is the vertical structure function, k indicates the vertical grid point value,
and h, is the equivalent depth for vertical mode n.

Since there are seven levels it is possible to decompose the data into seven vertical
modes. Figure 2.1 depicts the vertical structure function for each mode in this data
set. As can be seen in the figure, motions that project into the first mode are almost
constant throughout the troposphere, hence this mode is known as the barotropic
or external mode. Those modes that project mostly into the second or third modes
posses reversal points at approximately 300 and 500 mb, respectively. The second
and higher modes are referred to collectively as the internal modes. When compared
to models with a greater number of levels, there is some consistency in the first three
modes, but thereafter, there is usually little to no similarity. The fifth mode of this
seven level model will be quite different from the fifth mode of a 19 level model.

As expected, there can be contributions to the vertical variance at a grid point by
more than one mode. Two combinations which will be seen repeatedly in subsequent
chapters are shown in Figs. 2.2 and 2.3. These are the equivalent barotropic and
vertical structure resulting in regions with mid-atmospheric heating. The equivalent
barotropic structure is a combination of a dominant first mode and a weaker third
mode. This results in a projection that maintains a positive value throughout the
troposphere, maximizing near 300 mb and then decreasing again through the lower
levels of the stratosphere. This type of structure would be expected of the zonal
wind components in or near a mid-latitude maximum wind band.

The structure shown in Fig. 2.3 is more indicative of deep tropical convection.
This results from a near equal contribution by the second and third modes, which
as stated previously, shows sign reversals near 300 and 500 mb. Note how this

combination results in a baroclinic structure which almost equally divides the
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Figure 2.1. Vertical structure function for seven levels of the ECMWF data set.
Equivalent depths are 9262, 930, 152, 37, 11, 4, and 0.7 m for modes one through
seven, respectively.
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Equivalent Borotropic Vertical Structure
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one plus 50% of mode three at each level (heavy solid line).
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atmosphere into positive and negative areas with a sign change near 500 mb.
This reasonably represents the vertical wind profile one would expect in a tropical
convectively active area with the level of nondivergence at mid-tropospheric levels.

Graphically, these modes are plotted in a rosette fashion at each grid point with
arrows to display the magnitude of each vertical mode in terms of the percentage
of the grid point vertical variability. The arrow convention used for each mode is as
follows: external or first mode (—), second mode (), third mode(7), fourth mode
(™\), and fifth mode (). Only the first five modes are depicted at a grid point
because these modes contribute most to the vertically integrated kinetic energy, as
will be shown later. It is recognized, however, that contributions from the higher
modes are necessary to define shallow layers at low levels, such as the structure
within the boundary layer. The following chapters will show how these procedures

are used to present details on the seasonal, interannual, and intraseasonal cycles.

2.2.3 Vertical Mode Projection of Fourier Coeflicients

We assume a vertical dependence for the Fourier coefficients Si(¢, o) = Si(¢) ¥(0o)

where (o) satisfies the differential equation,

d (f_g_d_%b

do \ RT, do

1

with the boundary conditions (see Kasahara and Puri, 1981) defined as

&
do

d!.' rn
o TY =0 ato=1, (2.8)

= finite ato=0, (2.7

where D is the eigenvalue of the differential equation 2.6. For the given boundary

conditions, the eigen functions 1;(c) are obtained from Errico’s programs for eigen
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values D;, (1 < i < 7). The eigen functions, ¥, are orthogonal and normalized so

that
/U (o) (o) do = 6 . (2.9)

Therefore, the input Fourier coefficients, Si can be written as

Si(¢,0) = > S2() ¥nlo) - (2.10)

Total vertical square value for wavenumber k, using the orthogonality condition

in equation 2.9 is given by:

A = / v(¢,0) $5(,0)do

= L), (211)

So, projection onto ¥,(c) permits quantification of how much of the squared
amplitude of each zonal wavenumber k may be explained by each vertical mode n.
Furthermore, since the total squared value of the function S (up,vr,up,vn) may

be expressed by equation 2.3, its vertical integral (giving the total squared value

both in the x and ¢ coordinates) is:

l—n =1

/’ 1 i S do = Z {IS"(«5)12 +15%(8))" + 2 Z IS"(¢)1"’} (2.12)

2.2.4 Shallow Water Equation Model

The linear shallow water model described in Paegle et al. (1983) is used to
quantify how much of the global atmospheric response may be explained by a
single mode linear model. The equations are:

0 # 0 _ g On” wvtang .
(—3;+rcosq$61\)u e AN wrcosgb@/\q’- r —vwl, o (213)
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8 AR . _gﬁ@(n'/h)viﬁlu'tan¢~ N
(Bt + T CO8 ¢6/\) v fuo= r O¢ T v, (2.14)
[ A Bu” N O(v”™ cos ¢)
0t+rcos¢6). o= rcos¢ | O 0¢
+ hQ —wvn". (2.15)

Here u™ = uh, v~ = vh, and n™ = nh, and u, v, n are the deviations of the zonal
flow, meridional flow and free surface height from the longitudinally invariant basic
state, respectively. The flow of this state (%) is in geostrophic equilibrium with the

basic state free surface displacement, i.e.,
T=—=——. (2.16)

The variables A, ¢, ¢ are longitude, latitude and time, respectively; r is the radius
of the earth; f and g are the Coriolis parameter and gravitational acceleration; and
Q represents the tropical forcing. Stationary solutions are obtained for the tropical
heating as specified in Chapter 3. The mean zonal wind is taken as that of the

decade annual average at 300 mb (see Fig. 2.4).

2.2.5 The Primitive Equation Model

Paegle’s (1989) primitive equation model is used to generalize results obtained
with the linear shallow water equations with a model that includes some nonlinear
effects. The model is based on a finite element representation in the meridional
direction while longitudinal structure is depicted with Fourier series. This latter
feature permits the maintenance of selected wave coefficients at prescribed values.
This option is implemented in this study to nudge the zonally invariant zonal wind
back to the initial zonal wind profile. The initial profile is taken from the annual

average of the 10 year data set at 200, 500, and 850 mb (see Fig. 2.4). Also, the
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model is truncated to 16 waves in the horizontal and as a result, small scale features
and small scale features that evolveinto large scale features are not well represented.
Because only three levels are used in the model, the vertical truncation prohibits
any representation from modes four or higher. These lost modes may be especially
important in the shallower convective regions of South America.

There are no topographical or wave-mean flow feedbacks in the simulations.
Wave patterns are allowed to develop in response to the tropical forcing which
is maintained constant throughout the integration. This model permits a more
complete assessment, that is, more so than does the linear shallow water model, of
how much of the extratropical response may be attributed to the tropical forcing.
The latter only allows for meridional propagation of a single vertical mode through
a zonally symmetric basic state, whereas the primitive equation model resolves
three vertical modes, allows conversion of baroclinic to barotropic flows by vertical
shear, permits wave advection by the Hadley cell and includes the influence of
longitudinally asymmetric states. The present application is simpler than other
relatively complete simulations of tropical-extratropical flows because it has no
directly forced wave sources outside the tropics. The primitive equation model is

based on the vorticity and divergence equations as follows:

8¢ 1 8
5; T rcos ¢%{cos¢[Nu + Fuvl}
1 0 _
+ rcos¢5X[N"+ Fa]+ V- (KnV{)+p(¢ - (), (2.17)
06 18

a rcos¢3¢>{cos¢[N" + Fal}

Lo
rcos ¢ OA

1
- V*9Z+5 -V -V+RLInP|+ V- [K,VE . (2.18)

[Nu + cos ¢Fu\']
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where Z is the o surface geopotential height, 7}, is the basic state virtual tempera-

ture, and P, is the surface pressure.

The terms N, and N, are defined by

RT' } 0 . Ou ‘
N, = (C + f)v - {rcos¢} B—j(ln Pg) - 0“6‘; , (2.19)

RT'| 0 . Ov
NU = -—(C +f)u —_ [ ” ] 54’5(111 P,) —— 0’5; . (220)

The thermodynamic equation has the form
oT’ 1 0 , 1 0 ,

8t " rcos ¢55(uT )= T cosd)@d)(vT cos )

T'5-¢7§z+ E-T—E”—+Q+an+v-[KVT’], (2.21)
0o C,p

where w is the vertical motion in pressure coordinates and € is the diabatic heating
specified as described in Chapters 3 and 4.

F,i- and F,;- parameterize vertical momentum mixing while Fyy parameterizes
horizontal and veriical mixing of heat. The vertical diffusivity (K ) equals 4 m?s™'
and the horizontal diffusivity (Ky) equals 5 x 10' m 2s™!, the relaxation coefficient
(1) is set to s1-, where At is the time step (set equal to six minutes). Lastly, ¢, found
in the last term of equation 2.17, is the initial relative vorticity of the zonal wind
profile of Fig. 2.4. This term is the part of the experiment design which precludes
changes from the zonal basic state by eddy-mean flow interactions. Again, this
quick relaxation to the initial conditions, assures that the zonally-averaged basic
state remains constant, and thus, any changes that occur in the model can be

attributed as a response to the forcing. Otherwise, there is no certainty as to
whether the response is due to the forcing, or a result of changes in the basic state.

The boundary conditions specify that ¢ = 0 at ¢ = 0,1. The vertically
int=grated continuity equation gives

O \ap 6+ V. VI
SlP, = -~/U(6+ .VInP,)de , (2.22)
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{
& = a/ (6+V-TlnP,)do
O
[+ V-TaPr)ds, (2.23)
o dln P,
; = St (2.24)
The vertical integral of the hydrostatic equation produces:
1 T
Z2=2,— ~ RTdIneo , (2.25)
g Jo=1

where Z, is surface geopotential height above sea level.
Further model details are given by Paegle (1989). All runs are integrated for 75
or 90 days and averaged for the last 15 days of integration to quantify the model

response to tropical heating.




CHAPTER 3

THE SEASONAL CYCLE

Seasonal atmospheric changes are perhaps the best documented of the observed
regular atmospheric cycles. Hsu and Wallace (1976a,b) present a summary of earlier
investigations which focus on the seasonal changes of surface patterns. Three-
dimensional data sets have been regularly archived only since the Global Weather
Experiment of 1979. Therefore, it only recently has become possible to obtain a
three-dimensional description of the seasonal cycle based on at least 10 years of
data.

Certain features of this cycle are well known. Upper level - 1ds are stronger
in midlatitudes than in the tropics and are stronger in winter than in summer.
Stationary waves exhibit larger amplitudes in the NH than in the SH, as expected
from longitudinal gradients of surface forcing. These features can be explained in
terms of the maintenance of the general circulation by transient eddies (e.g., Lorenz
1967) in the presence of dissipation and boundary forcing. This forcing includes
both surface effects due to land-sea contrasts and orography, the thermal forcing
resulting from the radiative balance of the atmosphere and the release of latent
heat, as well as the remote forcing due to horizontal wave propagation.

Recently, there has been a renewed interest in the simulation of the seasonal
cycle by general circulation models (GCMs) due to studies which have shown the
interaction of the seasonal cycle with intraseasonal variations (e.g., Knutson and
Weickmann 1987) and of the seasonal dependence of certain ENSO episodes (Ras-

musson and Carpenter 1982). Verification of seasonal GCM integrations requires
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climatologies that describe the average state of the atmosphere for different months,
as well as second order statistics such as variances and covariances of different
quantities such as the kinetic and available potential energy, heat and momentum
transporis, etc.

Current GCMs may perform well in describing the averaged state of the atmo-
sphere (see e.g., Kanamitsu et al. 1990 or Kinter et al. 1988 for a description of
the seasonal march of the National Meteorological Center GCM) but they do not
do as well with second order quantities. Part of the difficulty resides in inade-
quate representation of forcing processes, and of these, the accurate representation
of tropical heating is one of the most difficult. Statistics that differentiate the
structures in tropical latitudes from those in extratropical latitudes are helpful to
diagnose GCM integrations and to determine the latitudes where these integrations
diverge from the observed seasonal evolution of the atmosphere. This chapter
presents one possible set of statistics, with emphasis on vertical flow structures and
decomposition of the wind into its rotational and divergent wind components. The
discussion is presented as follows:

e First, the zonally averaged seasonal cycle is discussed and it is linked with the
seasonal migration of tropical heating.

e Then, seasonally averaged waves in the height fields of isobaric surfaces are
described. This description includes quantification of the momentum and heat
transport by these stationary waves which are indicative of their horizontal and
vertical tilt. The seasonal march of the height waves is presented in terms of the
amplitude of Fourier components for different wavenumbers. Results presented in
this and the previous section have been reported previously to a limited extent.
Compilations, in the form of atlases, are given by Randel (1987) and Schubert et
al. (1990a,b). Some aspects of the mean field characteristics discussed here have

been reported in studies such as those of Oort and Rasmusson (1971), Blackmon
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et al. (1977), Lau and Wallace (1979), Wallace (1983), etc. These studies have
emphasized the structure of the height fields. A more unique aspect of the current
study is its emphasis on the wind field, which does not have the latitudinal bias of
the height field. This is considered next.

¢ The wind is separated in its rotational and divergent parts and projected into
vertical structures as described in Chapter 2. The expected vertically reversing
circulations of the tropics are shown to abruptly transition into the equivalent
barotropic structure of the extratropics within 10° latitudinal bands. This abrupt
transition suggests the limited applicability of linear models with a single vertical
mode to describe the global response of the atmosphere to tropical heating. Though
such linear models have been successfully used in the past to explain the tropical
response, it has been shown that the transition from dominant internal tropical
structures to the equivalent barotropic structure of mid-latitudes require the vertical
shear of the mean wind (Simmons 1982; Kasahara and Silva Dias 1986). In
this chapter, the observed stationary extratropical wave pattern is compared with
numerical solutions of models forced in the tropics with a heating function derived
from the OLR field.

o The linearized shallow water equation model permits an estimate of the extent
to which the observed summer waves result from the linear response to tropical
heating in the presence of a meridionally changing zonal wind. This linear solution
does not allow much propagation into the winter hemisphere due to the presence of
tropical easterlies. Also, this model allows excitation of only a single vertical mode.
These limitations are removed by using a global primitive equation model nudged

to maintain a basic state with vertical shear.
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3.1 Zonally Averaged Seasonal Cycle

Interpretation of the observed response of the atmosphere to wave propagation
in a latitudinally and vertically varying basic state requires determination of the
meridional and vertical structure of the zonal wind. Figure 3.1 depicts seasonal
latitude-height cross—sections of the zonally-averaged zonal wind, computed from
the decade monthly means. Positive/negative values represent westerly/easterly
winds, respectively.

In the NH, winds are strongest during the winter (DJF) with average winds

! at 200 mb. Speeds decrease in the jet core during spring (MAM),

exceeding 40 ms~
and reach their minimum value of 21 ms™' during summer (JJA). At this time, a
poleward shift of approximately 15° can be seen in the jet core, with a secondary
maximum value near 70° N and lower in the troposphere, closer to 300 mb. This
secondary arctic jet disappears during boreal fall (SON) and wind speeds within
the jet core increase slightly.

As expected, similar results are found for the SH for similar seasons. During
austral summer (DJF) maximum winds are only 29 ms™' at 200 mb and located
near 50° S. During SH fall (MAM), the jet migrates toward the equator. By winter

I at

(JJA), winds have reached their peak value with velocities in excess of 39 ms™
200 mb. Also apparent at this time is a tongue of the stratospheric jet over 60° S.
This structure persists through SON even though the speed of the zonal winds has
decreased.

Comparison of the zonal wind profile for the intermediate seasons reveals higher
NH values in boreal spring than in fall, with maximum values found about 10-
15° further south in spring.

All easterly winds are confined to the tropics and for the most part are weak

and located near the surface. The exception is during JJA when easterlies in

excess of 9 ms~! push up into the tropical troposphere. The annual average of the
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zonal wind exhibits equatorial easterlies at all levels. These easterlies prevent the
interhemispheric propagation of linear waves in the annually-averaged basic state.
It will be shown in Section 3.4 that the linear response of the shallow water equation
model to the tropical heating is mostly confined to the summer hemisphere.

The seasonal averages for zonally-averaged meridional winds are shown in Fig.
3.2. In this figure, positive values are northerly winds and negative values are
southerly winds. The zonally averaged meridional wind represents the Hadley cell
and it is more than one order of magnitude less than the zone! wind. During
boreal winter (DJF), strong southerly surface winds are present from 30° N to the
Equator, where they converge with weaker, SH northerly winds. Aloft, maximum
values occur at 200 mb with relatively strong northerly winds in the NH and weak
southerly winds in the SH. A similar, but reversed pattern appears during austral
winter (JJA) with the strongest winds in the Hadley Cell occurring again in the
winter hemisphere. The intermediate spring/fall seasons are similer to each other,
with winds both aloft and near the surface almost equal in magnitude. The zero
line is found near the equator during MAM, whereas it is about 15 ° N in SON.
This is consistent with the averaged position of the ITCZ, which is found in the
NH during NH fall. Northerlies are stronger during MAM than during SON. By
conservation of angular momentum, it would be expected that a stronger Hadley
cell would result in higher zonal winds in the NH during boreal spring than fall.
This is shown to be the case in Fig. 3.1. Similar results were found by Fleming et
al. (1987).

When the values for the zonal and meridional wind are compared with NMC data
(provided by Kingtse Mo), the zonal components are all in excellent agreement.
There are significant variations in the meridional wind with the magnitudes of the
ECMWF data at least twice as strong as the NMC data. However, although the

magnitudes differ, the relative seasonal strengths are in agreement, that is, the
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southerlies are stronger in spring than in fall for both data sets.

This structure of convergence at the surface and divergence aloft is associated
with rising motions, which take place in a convectively unstable environment and
therefore result in tropical convection. The OLR is used here to delineate areas
with tropical convection since high, cold cloud tops give small values of OLR. This
relationship holds true in the tropics between 30° N and 30° S. Global maps of
zonal winds, velocity potential and OLR fields are shown in Fig. 3.3. OLR values
less than 200 Wm™?2 are solid black, values between 200-220 Wm™? are shaded with
heavy dots, and between 220-240 Wm~2 with light dots.

During January, three centers of convection can be found south of the equator
(Fig. 3.3b).  They are located over southern Africa, the maritime continent,
and central South America. The divergent wind flows out of the area of strong
convective forcing and into the region of strong zonal wind, directly across the
gradient of the velocity potential and into the region of maximum zonal wind at 200
mb. Enhancement of the subtropical jets have been long recognized to be common
in regions of deep tropical convection (e.g., Bjerknes 1966, 1969) and explanation
for their position has been sought as resulting from the excitation of Rossby waves
due to tropical heating. Nevertheless, the observed longitudinal position of the
wind maxima (see Fig. 3.3a,c) differs from that predicted by single level models
such as that of Gill (1980). In the latter case, maximum westerlies are found to the
west of the tropical heating instead of at similar longitudes.

Three convection centers are also present during July (Fig. 3.3d), but they have
migrated north of the Equator, following the sun. The center over the Bay of
Bengal, previously over the maritime continent, is the only center to increase in
areal coverage. The divergent winds can again be seen exiting the areas of strong
convective forcing and moving toward areas of strong zonal wind (e.g., Krishnamurti

1971). The most pronounced outflow is found over southern Asia associated with
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Figure 3.3. January and July 1980-1989. Zonal wind shown in (a,c). Contour
interval is 5 ms~' with light, medium and dark shading for speeds of 15-30 ms™' ,
30-45 ms~' , and 45-60 ms~! . OLR, velocity potential and divergent winds are
shown in (b,d). OLR shading discussed in text. Maximum winds are 5.4 ms™' near
23° N, 124° E in (b) and 4.6 ms™' near 18° N, 90° E in (d). Wind less than 2

ms~' are not plotted in (b,d).
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the Indian monsoon.

A representation of the seasonal evolution of the OLR fields is shown in Fig. 3.4
with time-longitude cross-section of 200 mb and 850 mb zonal wind at 15° N. The
atmospheric response to convective forcing between 10-20° N exhibits a vertically
reversing circulation with maximum easterlies over the Indian Ocean associated
with the monsoon. Increases in convective activity (indicated by decreasing OLR
values) in these latitudes are followed by 200 mb zonal wind changing from westerly
to easterly, at similar longitudes, with only minor time lags. As the convection
decays, there is a rapid decrease in the strength of the easterly winds. A similar,
but opposite response occurs at lower levels and it is seen as an increase in the
westerly winds at 850 mb. This evolution in the zonal wind repeats itself off the
west coast of South America.

.Figure 3.3 also shows a dominant wave one in the subtropical SH zonal wind
during July and a wave two pattern in January in the NH. The amplitude of these
wind and other height waves are quantified in the next section by projecting height

and wind fields onto Fourier functions.

3.2 Seasonal Wave Cycle
3.2.1 Stationary Waves

Stationary waves partly result from the atmospheric response to various sur-
face and mid-atmospheric forcing. The vertical structure and tilt of the zonally
asymmetric component of the geopotential height field indicate the nature of the
forcing. For example, topographically forced waves which propagate vertically tilt
westward with height (e.g., Held 1983). An equivalent barotropic response in the
extratropics may indicate a tropical source embedded in a zonal flow with vertical

shear (Simmons 1982; Kasahara and Silva Dias 1989). A vertically reversing
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Figure 3.4. Time-longitude sections of (a) 200 mb zonal wind, (b) OLR, and (c)
850 mb zonal wind at 15° N. Contour interval for (a) and (c) are 5 ms™' and 2
ms~'. OLR shading follows the same convention described in text.
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structure such as that shown in Fig. 3.4 indicates mid-atmospheric local forcing
(such as latent heat release).

The vertical structure of the winter and summer standing waves in the NH, seen
in Fig. 3.5a-c, indicates an amplitude that maximizes near 200 mb and shows a
slight westward tilt. This tilt, suggestive of vertically propagating wave modes,
together with the strong indication of a wavenumber two pattern seen in the
amplitude, suggest that the orographic forcing from the Himalayan Plateau and
Rocky Mountains is the dominant factor in determining the positions of the major
troughs and ridges during winter. Therefore, we do not expect to be able to
reproduce this feature of the stationary waves in the model integrations forced
only with tropical heating.

During boreal summer, the amplitude of the stationary waves decreases sig-
nificantly (Fig. 3.5d-f). The westward tilt is no longer apparent and the near
vertical appearance, with amplitude increasing with increasing height, suggests an
equivalent barotropic component. A strong, distinct phase reversal can be seen at
25° N between the upper and lower tropospheric geopotential height fields, centered
near 90° E, indicating the Indian monsoon. Thus, the monsoon circulation, driven
by diabatic heating, appears to account for the prominent summertime maximum
in the stationary wave pattern. With the exception of White (1982), the role of
mechanical forcing by orography during the NH summer has received relatively
little emphasis, probably due to the lack of a westward tilt. However, Wallace
(1983) points out that when thermal and orographic forcing are simultaneously
present, the vertical structure of the waves may not be a reliable indicator as to
the dominant type of forcing.

The seasonal variation in the SH stationary waves is much less pronounced than
in the NH. Tropical latitudes exhibit weak amplitudes with similar patterns in

summer and winter (Fig. 3.6). At higher latitudes a wave one pattern is dominant.
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Figure 3.5. Height-longitude cross-section of the stationary wave geopotential
height for December-February 1980-1989 at (a) 60° N, (b) 45° N, and (c) 25° N
and for June-August 1980-1989 at (d) 60° N, (e) 45° N, and (f) 25° N. Contour

interval is 30 m.
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Figure 3.6. Height-longitude cross-section of the stationary wave geopotential
height for June-August 1980-1989 at (a) 25° S, (b) 45° S, and (c) 60° S and for
December-February 1980-1989 at (d) 25° S, (e) 45° S, and (f) 60° S. Contour

interval is 30 m.
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Wave amplitudes maximize between 300-200 mb, and have no vertical tilt. During
SH summer (Fig. 3.6d-f) the high latitudes show evidence of a wavenumber one,
barotropic structure. A smaller, and much weaker area of phase reversal, as
compared the the NH, is seen off the coast of South America in the tropical region.
This is accompanied by an even smaller region, but of opposite sign, over the South
American continent.

During the transition seasons, the structure of the NH standing waves are
remarkably similar (Fig. 3.7). A near barotropic response is present in the NH at
mid- and high latitudes with a slight westward tilt at low levels over the western
Pacific, which decreases rapidly with height. The tilt is slightly more pronounced
during autumn. The height of the maximum amplitudes at these latitudes changes
slightly from near 300 mb for spring to 300-200 mb during fall, with autumn values
slightly higher. This is consistent with Fleming (1987), who found many of the
features of the NH autumn pattern to be somewhat stronger. The phase reversal
over the region of the Indian monsoon is present during both seasons, with the
maximum low level amplitude slightly further eastward during spring.

Unlike the NH, the structure of the SH geopotential height standing waves,
shown in Fig. 3.8, is quite different during the two transition seasons. The maximum
wave amplitude is much greater, particularly at high latitudes, during the austral
spring. Therefore, the stronger of the two transition seasons is different for the hemi-
spheres, but they occur during the same actual months of September-November.

These differences in the transition seasons may also be seen in the poleward
momentum transport, ([E"%7]), and meridional heat transport, ([#°7T"]). These are
shown in Fig. 3.9.

The largest values of both heat and momentum transport occur in the NH during

DJF (Fig. 3.9a,b) as expected from the westward tilt of the waves with height.

There is meridional convergence of momentum transport between 30° and 60° N
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Figure 3.7. Height-longitude cross-section of the stationary wave geopotential
height for March-May 1980-1989 at (a) 60° N, (b) 45° N, and (c) 25° N and for
September-November 1980-1989 at (d) 60° N, (e) 45° N, and (f) 25° N. Contour

interval is 30 m.
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Figure 3.8. Height-longitude cross—section of the stationary wave geopotential
height for September-November 1980-1989 at (a) 25° S, (b) 45° S, and (c) 60° S and
for March-May 1980-1989 at (d) 25° S, (e) 45° S, and (f) 60° S. Contour interval

1s 30 m.
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indicating the stationary wave role in maintaining the zonally averaged circulation
against dissipation. The heat transport maximum throughout the troposphere is
centered over 50-60° N. Momentum transport at upper levels in the SH never
approaches the magnitude of the NH, even during austral winter (JJA). This is
also consistent with the relatively small magnitude of the SH waves compared with
those in the NH. Maximum values in the SH are limited to lower layers of the
atmosphere and poleward of 60° S. However, these values are close to the Antarctic
continent and may not be reliable. Anouner area of significant momentum flux
near the surface occurs during JJA between the equator and 30° N. 'The pattern
of heat transport mimics the momentum transport. The exception occurs during
SON in the SH where a stratospheric intrusion of heat flux is present in the upper
troposphere between approximately 60-80° S.

In summary, the results presented in this subsection quantify the vertical and
horizontal structure of stationary waves. These are found to tilt westward with
height in the NH winter, they exhibit pronounced northwest to southeast tilts at
high latitudes and from northeast to southwest at mid-latitudes. These meridional
tilts are inferred from the momentum transports. Wave amplitudes are larger in the
NH than in the SH and they exhibit a pronounced seasonal variation. The internal
structure typical of heat driven circulations is observed in the tropics during NH
summer and to a much lesser extent over tropical South America during austral

sumimer.

3.2.2 Fourier Analysis

Quantification of the amplitude of the dominant planetary waves shown in the
previous subsection is now presented. Fourier analysis of geopotential heights
reveals that wave one is the main contributor to the 200 mb height field (Fig.

3.10).
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Maximum values in the northern hemisphere occur in winter, near 45° N for wave
one, and near 60° N for wave two. Maximum values in the SH are found for wave
one during austral winter, centered near 60° S. Waves shorter than wavenumber
three contribute comparatively little to the zonal flow variations at 200 mb and
are not shown. Waves decrease in summer to 25 to 30% of their winter amplitude.
During boreal summer a relative maximum is found at about 30° N both in waves
one and two reflecting the effect of the Asian monsoon in the height field. In
the SH late spring and summer wavenumber three exhibits a relative maximum
amplitude in the subtropics. This is expected from the three dominant centers
of convection previously discussed during this season. Wave three also appears
to attain maximum amplitude during October‘and February at these latitudes.
While the February maximum may be attributed to meridional propagation from
the tropics, causes for the October maximum are not clear.

The height waves at 850 mb mirror the upper tropospheric flow in the NH and
SH with the exception of much decreased amplitude. Also, the maximum amplitude

is now observed for wave two during boreal winter.

3.3 Wavenumber Vertical Structure

The previous section focused on the height field which exhibits maximum wave
amplitude in the extratropics. In this section, winds are considered instead of
heights, and their vertical structure is quantified in terms of the contribution to the

rotational and divergent wind by different vertical modes as explained in Chapter

2.

3.3.1 The Zonal Rotational Wind

As described in Chapter 2, the Fourier coefficients, Sk, are projected onto

the vertical structure functions, 9,(¢), to obtain the contributions to the Fourier
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coefficients by the different vertical modes, 5',';. Values are normalized using the
maximum value for each wavenumber, within the latitudinal belts of 90° S-30° S,
30° S-30° N, and 30° N-90° N. This is done so that features in the vertical structure
of the SH and tropics are not normalized by values from the dominant NH. Also,
within the latitudinal belts, grid points whose total normalized vertical variability
does not exceed 0.25 for a given wavenumber are not plotted. As described in
Section 2.2.2, the modes are represented in rosette fashion, using the following
format: mode 1 (—), mode 2 ("), mode 3 (1), mode 4 ("), and mode 5 ().
These arrows represent the contribution from the different vertical modes to the
total wave field. The discussion is limited to the first seven wavenumbers, since
for all but the meridional rotational wind, the first seven wavenumbers account
for approximately 75% of the total wind variability during all seasons (see Fig.
3.11).  Tables 3.1 through 3.4 present the maximum values within each of the
latitudinal belts, by wavenumber, used to normalize the grid point values for each
of the rotational and divergent wind components. The total contribution by eac.
mode, for each wavenumber, for latitudes from 80° N to 80° S, at 10° intervals, is
shown next for the midpoint of each season.

During January (Fig. 3.12a) the vertical structure for the first five wavenumbers,
outside the tropics, is composed primarily of a combination of the external and
second internal modes (modes one and three). This is the combination which
results in an equivalent barotropic structure (refer to Fig. 2.2). The tropics, from
the equator to approximately 20° S, yield a composite of mode two and three. This
results in a vertical reversing structure, typical of that found associated with deep
convection (Fig. 2.3). Wavenumbers six and seven, the shorter wavelengths, still
have a significant external mode, but also more of a complex vertical structure. This
is due to more variability at lower levels which result in significant contributions

from modes four and five.
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Table 3.1. Maxima (ms™') for zonal rotational wind summed for the first seven
wavenumbers over the latitudinal belts for January, April, July and October
1980-1989.

ZONAL ROTATIONAL WIND
January 1980-1989
Wavenumber || 90° S ~30°S [ 30°S-30°N [ 30° N-90° N

1 4.74 11.95 12.15
2 2.35 3.38 5.33
3 1.76 6.96 7.71
4 1.94 3.35 3.35
5 0.48 1.58 1.58
6 0.49 1.15 1.15
7 0.90 1.65 1.69

April 1980-1989
Wavenumber || 90° S -30°S {30°S-30° N | 30° N-90" N

1 4.57 4.73 6.39
2 1.85 3.32 3.18
3 2.24 441 4.41
4 1.76 2.03 1.87
5 0.74 1.08 1.31
6 0.41 0.71 0.75
7 0.65 1.04 1.24

July 1980-1989
Wavenumber || 90° S-30°S | 30°S-30° N | 30° N-90° N

1 7.94 7.07 5.25
2 2.10 3.47 2.30
3 2.11 2.24 2.48
4 1.41 1.99 1.48
5 0.69 0.85 1.92
6 0.58 1.16 1.20
7 0.48 1.19 1.40

October 1980-1989
Wavenumber || 90° S -30°S [ 30°S-30° N |{30° N-90° N

1 6.08 5.50 7.20
2 2.62 4.10 4.93
3 1.87 3.10 3.10
4 1.47 1.83 1.58
5 0.84 1.18 1.25
6 0.57 0.78 0.88
7 0.91 1.47 1.57
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Table 3.2. Maxima (ms~') for meridional rotational wind summed for the first
seven wavenumbers over the latitudinal belts for January and July 1980-1989.

MERIDIONAL ROTATIONAL WIND
January 1980-1989
Wavenumber || 90° S - 30°5 130°S-30°N | 30° N-90° N

1 2.33 1.69 2.88
2 1.07 1.56 5.29
3 1.59 3.14 5.78
4 1.35 1.95 3.60
5 0.84 0.70 1.88
6 0.64 0.91 1.25
7 1.06 1.05 0.83

July 1980-1989
Wavenumber || 90° S -30°S {30°S-30° N | 30° N -90° N

i 3.15 2.23 2.28
2 2,05 2.34 2.39
3 . 2.67 0.91 1.47
4 I 1.06 1.54
5 081 0.80 1.98
6 0.48 0.64 1.72
7 0.44 0.94 2.06
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Table 3.3. Maxima (ms~!) for zonal divergent wind summed for the first seven
wavenumbers over the latitudinal belts for January and July 1980-1989.

ZONAL DIVERGENT WIND
January 1980-1989
Wavenumber [ 90° S -30°S [ 30°S-30° N | 30° N-90° N

1 : 0.63 0.57 0.75
2 0.30 0.39 0.58
3 0.43 0.48 0.55
4 0.40 0.43 0.24
5 0.07 0.17 0.19
6 0.09 0.19 0.17
7 0.15 0.17 0.15

July 1980-1989
Wavenumber || 90° S ~30°S | 30°S ~30° N {30° N-90° N

1 0.89 1.10 1.14
2 0.29 0.90 0.91
3 0.29 0.25 0.36
4 0.24 0.31 0.31
5 0.19 0.25 0.17
6 0.13 0.16 0.12
7 0.10 0.24 0.25
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Table 3.4. Maxima (ms~') for meridional divergent wind summed for the first
seven wavenumbers over the latitudinal belts for January and July 1980-1989.

MERIDIONAL DIVERGENT WIND
January 1980-1989
Wavenumber || 90° S ~30°S {30°S-30°N [ 30° N -90° N

1 0.56 0.69 0.75
2 0.24 0.43 0.43
3 0.32 0.58 0.54
4 0.26 0.28 0.20
5 0.07 0.24 0.22
6 0.10 0.16 0.11
7 0.10 0.21 0.13

July 1980-1989
Wavenumber || 90° S -30°S [ 30°S-30°N | 30°N-90°N

1 0.79 0.88 1.13
2 0.27 0.53 0.65
3 0.26 0.38 0.23
4 0.22 0.29 0.20
5 0.16 0.22 0.14
6 0.10 0.16 0.14
7 0.10 0.15 0.13
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Figure 3.12. Contribution by the first five vertical modes for the zonal rotational
wind during (a) January and (b) April 1980-1989 for waves one through seven.

Mode representation by arrows described in text. Maximum normalized vecior
shown in bottom right of each panel.
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At mid- and high latitudes, little has changed for the month of April (Fig.
3.12b) for wavenumbers one through five. The vertically reversing structure, a
result of the mode two aﬁd three combination, has spread into the NH to 20° N for
wavenumbers two and four. While little of the mode composition has changed at
the higher wavenumbers, more latitudes now exhibit total vertical variances larger
than the threshold value.

The month of July (as seen in Fig. 3.13a) shows the mode one/three combination
of an equivalent barotropic atmosphere for most of the extratropics all the way
through wavenumber seven. In the SH tropics, the mode two vertical contribution
has dropped off sharply for wavenumbers one through three and it is now found
in the NH, up to 10° N, at wavenumbers one through five, indicative of the Asian
monsoon. The first seven wavenumbers continue to account for at least 75% of the
total variance of the vertical structure.

The same holds true for the wavenumber total during October (Fig. 3.13b).
However, a distinction now exists between NH and SH extratropical regions. The
NH shows a strong external/second internal mode, while the SH is more comprised
of a strong external mode which overshadows the minor contributions from the
internal modes. This holds true, with few exceptions, at all latitudes and for the
first six wavenumbers. The strong convective mode combination has died off in the
NH, but continues in the tropics and SH, reaching as far as 40° S for wavenumbers

four through six.

3.3.2 The Meridional Rotational Wind

The vertical structure of the meridional rotational wind exhibit some similarities
with that of the zonal wind, with some notable exceptions. These are discussed

next for the months of January and July.
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Figure 3.13. Contribution by the first five vertical modes for the zonal rotational
wind during (a) July and (b) October 1980-1989 for waves one through seven. Mode
representation by arrows described in text. Maximum normalized vector shown in
bottom right of each panel.
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Recall from Fig. 3.11b that the first seven wavenumbers do not explain at least
75% of the total longitudinal variance for the meridional rotational wind at most
latitudes. It is necessary to include at least the first eight, and possibly as many as
ten wavenumbers, to achieve the same level of completeness in the representation
of the variance. This is expected from the geostrophic approximation.

The most notable mode structure differences for the meridional rotational wind
during January (Fig. 3.14a), when compared to the zonal component, are the lack
of a significant contribution at the equator, due to the prevalent zonality of the
tropical rotational flow, and the strong internal mode contribution in the SH to
30° S for the first six wavenumbers. As with the zonal rotational wind, the external
mode dominates outside the tropics, mixed with the second internal (third) mode.

By July (Fig. 3.14b) important contributions from the internal modes have
spread to 50° N for wavenumbers one and two and as far as 30° N for wavenum-
bers three through six. The exception appears to be for wavenumber one, where
internal modes appear to remain strong in the tropical NH, and also in the tropical
and extratropical SH. The combination of modes one and two found in the SH
would indicate a wind profile that continvously increases with height, reaching its
maximum value at or above the top layer of the data.

The rotational wind analysis has shown, in summary, that there is a pronounced
change in the vertical structure of the rotational wind planetary waves from the
tropical internal to the extratropical equivalent barotropic structure. Though this
result is not new, the fact that this change takes place for the long waves withi.
10-15° poleward of latitudes of organized convection has not been previously doc-
umented. The vertical mode decomposition of zonal divergent wind is discussed

next.
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3.3.3 The Zonal Divergent Wind

The longitudinal-vertical overturnings of the Walker circulation are reflected in
this wind component.

The most readily apparent difference between the vertical structure of the ro-
tational and divergent winds is the contribution made by the internal modes, as
seen in January (see Fig. 3.15a), particularly the higher internal modes, indicating
the existence of shallower layers at lower altitudes. The changes in the vertical
structure of the divergent wind are more subtle than those of the rotational wind
and they are more readily apparent when examining the plots on a wavenumber by
wavenumber basis. Wavenumber two in the SH subtiupics is dominated by mode
two during January, but shifts to a near equal contribution by all modes during
April (not shown), and a return to a strong mode two during July (Fig. 3.15b). The
NH response is almost seasonally mirrored, with modes one through three strongest
in January and modes two and three strongest during July.

At wavenumber three the tropics from 10° N to 10° § exhibit a strong mode
five response during all months. This annual consistency in the tropics also holds
for a mode two/four combination at wavenumber four, whereas a strong mode five
response is apparent in this region for wavenumbers five through seven (except

during July where it is found in wavenumbers five and six).

3.3.4 The Meridional Divergent Wind

As with the zonal divergent wind, the meridional divergent wind can be almost
totally explained by looking at the first seven wavenumbers. The meridional diver-
gent wind has a strong zonally averaged component, the Hadley cell, which is not
included in the following discussion.

Beginning with wavenumber one, the tropics, between 10° N and 10° S, and SH

show little change throughout the year with modes two and five playing the major
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Figure 3.15. Contribution by the first five vertical modes for the zonal divergeni
wind during (a) January and (b) July 1980-1989 for waves one through seven. Mode
representation by arrows described in text. Maximum normalized vector shown in

bottom right of each panel.
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role (Fig. 3.16). In the NH, mid-latitudes show a mode two/three combination
during January which slowly becomes a dominant mode two by October.

Wavenumber two echos wavenumber one in the tropics and SH during January
with modes two and five providing the largest contributions. However, during July,
mode five weakens and mode three dominates. The NH undergoes a transition from
a near equal contribution by modes one, two, and three, during the first half of the
year, to an almost exclusive mode two/three combination for July.

The third mode gives dominant contributions for wavenumber three throughout
most of the year in the NH, whereas mode five has this dominant annual role in
the tropics, shared at times by modes two and three.

The above results indicate, that in general, the Walker circulation, as represented
by planetary waves one and two in zonal divergent wind in the tropics, exhibits a
deeper vertical structure than does the meridional divergent wind. This structure
extends into higher latitudes without the pronounced meridional changes apparent
in the structure of the meridional divergent component close to the equator. The
above discussion presented contributions by different vertical modes normalized by
the total vertical variance for each wavenumber. Therefore, no description was
given of the actual magnitude of the contributions by different modes. This is
done next, focusing on the main contributors to the variance of the rotational zonal
wind (modes one, two, and three) and the meridional and zonal divergent wind

component (modes two through five) to the planetary waves.

3.3.5 Seasonal March of Selected Waves and Modes

The discussion in the previous sections has emphasized differences in the vertical
structure of the tropics and the extratropics. In spite of these differences, a
linkage between the reversing divergent tropical circulations and the extratropical

equivalent barotropic rotational flow is apparent in the seasonal flow evolution.
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Figure 3.16. Contribution by the first five vertical modes for the meridional
divergent wind during (a) January and (b) July 1980-1989 for waves one through
seven. Mode representation by arrows described in text. Maximnum normalized
vector shown in bottom right of each panel.
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Figure 3.17 shows large contributions from waves one (a,b,c) and two (d,e,f) in the
extratropics with an equivalent barotropic structure, as discussed before. Panels
(g) and (i) also clearly show an important contribution by zonal wave three to the
NH winter subtropical zonal rotational wave field.

Inspection of Fig. 3.18 reveals marked contributions to the meridional divergent
wind by waves two and three in the internal modes during NH winter. The
meridional overturnings associated with the three convective maxima located in the
SH tropics in January produce a wave three meridional divergent pattern modulated
with a wave two which maximizes in the NH subtropics. This is reflected in the
Dec-Jan maxima of Fig. 3.18e and h. During NH summer, the main contributions to
the meridional divergent wind are seen in waves one and two (maximizing in July)
in response to the Asian and North American monsoonal circulations. At the same
time, a wave one response is seen in the subtropical jet of the SH. These features
are easily interpreted considering that the release of latent heat in the trupics is
compensated by the adiabatic cooling of rising motions. The rising air results
in the divergent meridional overturning in the Hadley cell and vave components.
Though the link between the Hadley circulation and the zonally-averaged zonal
wind has been extensively discussed in the literature, the link between the divergent
wave meridional overturnings and wave patterns in the extratropics has received
less attention. At least two mechanisms may be involved to explain this link.
Sardeshmukh and Hoskins (1988) have argued that the advection of vorticity by
the meridional divergent wind may produce a Rossby wave source. Nevertheless,
they emphasize that the resulting wave train would be relatively insensitive to
the longitudinal location of the tropical heating. Another possibility is that the
local Hadley cell causes local zonal wind accelerations similar to those of the
zonally-averaged circulations.

Further inspection of Fig. 3.18 reveals that the contributions by the second mode
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Figure 3.17. Latitude/time cross-section of the vertical modes for long wave
contributions to the zonal rotational wind. The first three modes for wave number
one are shown in (a), (b), and (c), for wavenumber two in (d), (e), and (1), and
lastly for wavenumber three in (g), (h), and (i). Contour intervalis 0.5 m s~'. Dark
shading represents speed from 2-4 ms™', medium dots are for speeds between 4-8
ms~', and light dots are for speeds ranging from 8-12 ms~'. Regions with speeds
greater than 12 ms™' are clear.
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Figure 3.18. Latitude/time cross-section of the vertical modes for long wave
contributions to the meridional divergent wind. The internal modes two, three,
and five for wavenumber one are shown in (a), (b), and (c), for wavenumber two
in (d), (e), and (f), and lastly for wavenumber three in (g), (h), and (i). Contour
interval is 0.05 ms~'. Dark shading represents speed from 0.1-0.2 ms™', medium
dots are for speeds between 0.2-0.4 ms™', heavy dots delineate speed of 0.3-0.4
ms~', and light dots are for speeds ranging from 0.4-0.5 ms™'. Regions with
speeds greater than 0.5 ms™' are clear.
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to the meridic.wl divergent wind are mostly confined to the summer hemisphere for
wave tw- . hree during NH/SH summer. On the other hand, contributions by the
third mode are more symmetric about the equator, with maximum values found in
the winter hemisphere (Fig. 3.18b,h). Important contributions to the long waves
are also given by mode five as seen in Fig. 3.18¢.1,i.

Figure 3.19 shows the vertical mode decomposition of the longitudinal divergent
overturning described by the long waves. This figure indicates that the NH summer
exhibits dominant waves one and two, while the SH summer exhibits strong wave
three components in the zonal divergent wind. This may also be interred from
Fig. 3.3. Maximum contributions to the longitudinal overturnings by the deeper
vertical modes (internal modes two and three} maximize close to 30° latitude.
This is different from what is observed for the meridional wind component, which
shows relative maxima close to the equator (Fig. 3.19d,g). The different vertical
structures for the zonal and meridional divergent wind components suggest lack of

horizontal isotropy on the divergent circulations induced by latent heat release.

3.4 Model Response to Tropical Heating

The extent to which observed extratropical wave patterns result from the tropical
heating is examined next through the use of linear and nonlinear numerical models.
The previous discussion indicates that the minimum vertical resolution capable of
describing the seasonal evolution should contain at least three vertical levels. It
has already been shown that the first three modes contain most of the vertical
structure, therefore, the three levels are chosen to capture features where these
modes maximize. As a result, Paegle’s (1989) primitive equation (PE) model is run
with three vertical levels centered at 0 = 0.2, 0.5, and 0.8. The PE model forcing is

accomplished by using a parabolic heating profile with the peak heating rate fixed
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Figure 3.19. Latitude/time cross-section of the vertical modes for long wave
contributions to the zonal divergent wind. The internal modes two, three. and
four for wavenumber one are shown in (a), (b), and (¢), for wavenumber two in (d).
(e), and (f), and lastly for wavenumber three in (g), (g), and (i). Contour interval
is 0.05 ms~'. Dark shading represents speed from 0.1-0.2 m s~', medium dots are
for speeds between 0.2-0.4 ms™', heavy dots delineate speed of 0.3-0.4 ms™', and
light dots are for speeds ranging from 0.4-0.5 ms~!. Regions with speeds greater
than 0.5 ms™' are clear.
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at the 0.50 level. These heating rates are derived from the OLR values, considering
only values smaller than 240 Wm~%. This threshold value of 240 Wm~? is then
subtracted from the OLR grid point value and the resulting number is divided by
10. This is then considered to be the heating in °K day~'. Compensating cooling is
prescribed over the remaining grid points, so that there is no net cooling or heating.
The validity of this approach can be demonstrated by comparing Figs. 3.20a,b and
3.21a,d. Maximum mean monthly rainfall rates for January and July in excess of
22 mm are found over the maritime continent and Bay of Bengal. It can be shown
than 20 mm of rainfall equates to approximately 6° K day~'. The maximum values
of 5.4° K day~! for January and 5.2° K day~' for July, obtained close to 90° E from
Fig. 3.21a,d, are in good agreement with the values extracted from the precipitation
dats.

The PE model is integrated for 90 days and the results are averaged for the last
two weeks. The initial conditi. -« are given by the zonally- and annually-averaged
zonal wind as shown in Fig. 2.4. The model is nudged to relax to this zonal
wind with a relaxation coefficient given by (4At)~', where At, the time step, is
equal to six minutes. As discussed in Section 2.2.5, this assures that the zonally
averaged wind remains that of the annual average through the integration. This
implementation of the PE model is designed to provide a response to diabatic
heating intermediate between a full GCM simulation and a linear model. The PE
design in the current integration mode excludes topographic feedback and wave
mean-flow interactions. It retains linear mechanics and includes some nonlinear
processes, such as Hadley cell transports (Schneider 1987) which are not included
in most linear treatments as well as vertical shear effects and local barotropic
instability to the extent that the basic state is produced by tropical heating.

These experiments are designed to address the question of how much of the

observed wave structure may be attributed to atmospheric response to tropical




99

30}

‘ojy @s18ury] jJo As23In02 popucad sydein) Ay pue Lrenue
Aep /wrw 01 06619861 pouad ayj 10} satel [fejurel fgyuow uesw (dDdD) pasuap ozzvaam. ﬁ.ucm.n aand1 ,M

i:ﬂL = e A : 0
P ,me l% .\\uv > QMV A\WMM.\//&

[ 4

‘sjun %v\EE Ul (06-3861) IPJUIDY JOdD AoOuDP UDSR

J.IIllI‘l\




100

JANUARY

Figure 3.21. Heating rates in °’K day~' multiplied by 100 and contoured every
100°K day~' for January (a) and July (d); observed velocity potentia! contoured
every 10° m?s~! and divergent wind truncated to include only the first and second
internal modes (b,e), velocity potential and divergent wind obtained as the average
of the last 15 days of a 90 day PE integration (c,f). The level for (c)-(f) is ¢ = 0.2
and the maximum wind vectors are set at 2.5 ms™'.
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heating and those features that are not reproduced by the simulations will be
interpreted as due to mechanisms not included in the model. Again, the emphasis is
on the model being a diagnostic tool and it is assumed that the model is capable of
adequately simulating the orographic response. Results are presented at the upper
tropospheric level only (¢ = 0.2).

The velocity potential and divergent winds obtained from the decade averages
for January and July are also shown for ¢ = 0.2 (Fig. 3.21b,e). These fields only
include the contributions from the second and third modes. Compare these to Fig.
3.21c,f which show the resulting divergent circulations from the PE model runs.
The July heating induces fairly realistic divergent circulations. In January, the
main difference is found in the North Pacific, where a divergent outflow present in
the analysis is not reproduced by the model. This outflow is probably associated
with quasi-geostrophic extratropical perturbations not directly linked with tropical
forcing.

The primary purpose of the linear model is to aid in the determination of when
the nonlinear PE model response makes its way into the opposite hemisphere. The
linear model is forced through a function whose horizontal structure is identical to
that of the PE model as shown in Fig. 3.21.a,d. However, because the linear model
contains no thermodynamic energy equation, the heating is put into the divergence
equation (2.15) of the shallow water model in the Q term. The results of forcing
the linear model with the same heating rate as the PE model are shown in Figure
3.22a,d. Note that the linear stationary response is mostly confined to the summer
hemisphere, where the majority of the heating is applied, as a result of the basic
state equatorial easterlies. ~ The 90 day PE integrations show similar response
to that of the linear model in the summer hemisphere. Thirty days earlier in the
integrations the wave pattern over south of Australia (Fig. 3.22b) and eastern Asia

(Fig. 3.22e) is quite different from that of the linear model and that shown by the




103

JANUARY

L

Figure 3.22. Height wave response to tropical heating obtained from the linear
shallow water equation model, contoured every 20 m (a, d). Height waves at o = 0.2
averaged for the last 15 days of the second (b, d) and third (d, f) month integrations
of the PE model. Contour interval is 40 m in panels b, c, e, and {.
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PE model 30 days later. These results ind.cate that at 60 days the response is still
evolving, and that 90 day integrations are adequate in reproducing the stationary
response of the waves. That is, after three months integration time the amplitude
of the PE response in the winter hemisphere are of similar magnitude to those in
the summer hemisphere.

The wind response predicted by the PE model is next examined in conjunction
with the climatology at o = 0.2 in Figs. 3.23 and 3.24. Comparison of Fig. 3.23a,b
suggests that the westerlies over the eastern equatorial Pacific in January are due to
the tropical response to mid-latitude forcing, since they are not reproduced by the
PE integrations. The PE response displays the westerlies straddling the equator
at approximately 256% of the analysis value. The PE integrations exhibit westerly
maxima north of the Arabian peninsula (5.54 ms™') and off the North American
coast (6.14 ms™'). These features are also present in the observations with over
twice the amplitude given by the PE model (2.4 and 2.3 times greater for the
Arabian and North American maxima, respectively). In contrast, the westerly jet
off the Asian coast is not reproduced by the numerical integration, indicating the
need to include orography and land-sea contrasts to account for this pronounced
feature of the NH winter circulation. The austral summer zonal wind maxima near
90° E is represented by the PE at 56% of its observed value.

The wave response is most easily seen in the meridional wind. Figure 3.23d shows
a wave three response in the NH winter as expected from the January forcing which
contains a pronounced wave three component. The observations instead present a
dominant wave two component which may be linked with the orography. The
average strength of the three PE northerly wind maxima in the NH (7.86 ms™')
are about 60% of the average strength of the two climatological wind maxima (13.3
ms™'). Similar results are found for the southerly wind maxima (55%).

Figure 3.24a shows the typical structure for the zonal wind in the SH during July,
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with a subtropical wind maximum over Australia spiraling southeasterly, circling
the Antarctic continent. A double jet is observed at ~ 160° E, with maximum
values near 25° (14.5 ms™!') and 60° S (9.43 ms™'). This feature is reproduced
by the PE model, but it is displaced about 90° west of the observations with the
double jet structure now present at about 60° E. Simulated values for the subtropical
zonal wind waves are near 45% of the observed values. The observed positive and
negative zonal wind bands of the NH summer have some counterparts in the PE
model whose maxima are about 35 to 45% of the observed values (42% Tibet, 36%
central Pacific, and 43% Central America). The observations (Fig. 3.24c) show a
wave train that appears to emanate in the Indian Ocean and propagates toward
the Pacific Ocean. A similar wave pattern with the right amplitude is predicted by
the PE integrations (see thick dashed lines in Fig. 3.24c,d), but it is further south
and of longer wavelength in the simulations. The PE model produces a meridional
overturning (Fig. 3.21f) that extends about 30° further south in the SH than is
observed (Fig. 3.21d). This may account for the southward shift of the Rossby
wave source discussed by Sardeshmukh and Hoskins (1988) and cause the Rossby
wave response to be shifted southward. Nevertheless, these results suggest that the
interpretation that the wave pattern in Fig. 3.24c may have a tropical origin is still
valid.

In summary, this chapter views the climatology of the vertical structure of the
seasonal cycle using 10 years of operational analyses from the ECMWF. In doing so,
the dominant wave patterns of the Northern and Southern Hemispheres are seen
to exhibit wave one and twe structures, with those in the NH containing larger
amplitudes and a westward tilt with height. The seasonal linkage between the
divergent and rotational wave patterns is also reviewed. Finally, simulations from
a three-level PE model are examined to quantify, within the framework of this

model, how much the tropical forcing translates into the observed extratropical
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response. Results suggest that over 40% of the observed midlatitude waves in the
SH can be attributed to tropical heating. The next step is to focus attention on

the interannual and intraseasonal variations.




CHAPTER 4

LOW-FREQUENCY OSCILLATIONS

Studies of tropical convection using OLR data (e.g., Lau and Chan 1988) have
revealed the existence of multiple time scales in the most dominant patterns of
convective variability. These time scales are those of i) the seasonal cycle, ii)
interannual changes associated with ENSO episodes, and iii) the 30-60 day or
intraseasonal oscillation.

The previous chapter focussed on the seasonal cycle and explored the extent to
which stationary extratropical patterns result from the annual changes of tropical
convection. The most dramatic seasonal changes were found associated with the
shift in convection from the monsoon region over eastern Asia, during NH summer,
to the western Pacific (Australia and the maritime continent) during winter. This
region also exhibits anomalous convection patterns associated with the other two
time scales of tropical variability (ENSO and intraseasonal oscillation). Weickmann
(1983) has noted the spatial similarity of patterns associated with these time
scales. Recent studies (e.g., Hendon and Liebmann 1990) have described the
global character of the intraseasonal oscillations which includes a tropical internal
structure and an extratropical equivalent barotropic response. In this chapter we
examine the vertical structure of interannual and intraseasonal variations. The
goals are 1) to determine whether the vertical structures of these global patterns
depend on the phase of the oscillations, and 2) to quantify how much of the observed

response may be directly linked to the tropical heating.
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4.1 E] Nino - Southern Oscillation Phenomenon

The Southern Oscillation (SO) is the name given by Sir Gilbert Walker to the
most prominent interannual atmospheric signal of the earth’s climate. Originally,
it was detected in the sea level pressure difference between two centers located
thousands of kilometer apart; one over the maritime continent and the second over
the tropical southeastern Pacific. In collaboration with Bliss (Walker and Bliss
1932,1937), they determined that the SO was also associated with major changes
in the precipitation and wind fields of the tropical Pacific and could be correlated
to fluctuations in meteorological variables around the globe, such as rainfall rates
in the Hawaiian Islands, sea level pressure changes over the Southeast US, and
temperature in wesiern Canada (Horel and Wallace 1981).

Analyses have determined the time scale of the SO to be between 2-7 years
with a duration of between 1-2 years (Lau and Chan 1988). There are two phases
to the SO which are termed warm, or El Nifio, and cold. The El Nifio events
are characterized by high surface pressure over the Indonesian center and low
pressure over the southeastern Pacific. This pressure gradient results in relaxed
trade winds in the central and eastern tropical Pacific. The Indian Ocean has
been suggested as the site where impulses for the ENSO originate, and it is also
the region where significant 30-60 day oscillation signals are found (Lau and Chan
1988). The wind -and surface pressure anomalies slowly propagate eastward from
this region, into the central Pacific. Once east of the maritime continent, the
anomalies are over the region of warm SSTs and, where the SSTs are sufficiently
warm, convection develops (Barnett 1983). The region of warm SSTs progresses
eastward, bringing heavy rainfall to the otherwise dry central and eastern Pacific.
In contrast, the cold phase is described by relatively lower/higher pressure over the
maritime continent/southeastern Pacific. Trade winds are intense and rainfall rates

and SSTs are lower in the central and eastern tropical Pacific. Both horizontal and
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vertical gradients of diabatic heating are required to maintain the pattern of these
large-scale thermally driven circulations.

The dominant pattern of the SO is one of two poles (see Fig. 4.1) which are
closely related to changes in SST's in the tropical Pacific. This important link was
made by Bjerknes (1969) who, in describing the large-scale west-east circulations
that develop in this region, introduced the term “Walker Circulation.” The zonal
counterpart to the Hadley Cell, this thermally-direct circulation is described by
rising motion and convection forming over the warm SSTs of the western Pacific,
upper level outflow moving to the east, subsidence in the eastern Pacific, and
easterly return flow at low levels back to the western Pacific.

The héat driven tropical circulations, on the seasonal time scales described in

Chapter 3, were shown to have internal mode structure given by a combination
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Figure 4.1. Composite assessment of the correlations of annual mean sea level
pressures with Darwin, Australia (taken from Trenberth and Shea, 1987).




113

of vertical modes two and three. Waves in the meridional divergent wind (vn)
were observed to reach maximum amplitude for the same months which exhibit
maximum amplitude in the extratropical zonal wind waves (up). This relationship
was best observed between the contributions from the third internal mode to vp
and those of the equivalent barotropic structure to uy. This relationship was
documented in Chapter 3 for the seasonal changes in convection. The current
chapter discusses whether similar relationships are found for the intraseasonal and
interannual changes.

In particular, the vertical structure of the flow is expected to exhibit longitudinal
variations due to different air-sea interactive processes acting ovei‘ the Indian
Ocean, western Pacific regions, an! the eastern Pacific. Over the warm pool of
the western Pacific, the static stability is relatively low and the rising motion and
resulting convection are in phase with the surface low pressure, and out of phase
with the surface zonal wind. Over the eastern Pacific, SST gradients are large (e.g.,
Horel 1982) and induce a pressure gradient force which drives relatively strong low
level westerlies below the convection center. In this case, the “beta” convergence
mechanism (Lindzen and Nigam, 1987), due to meridional motions, determine the
heating distribution. These different vertical flow configurations were found by
Wang (1992) to be typical of the cold/warm phases of the 82/83 and 86/87 ENSO
episodes. His study was based on 200 and 850 mb winds and surface data. These

two ENSO episodes are discussed next based on a more complete data set.

4.1.1 1983 - 1985 ENSO

Low values of OLR have long been used as an indicator for areas of deep con-
vection in the tropics. The months of February 1983/1987 and February 1985/1989
represent the warm/cold phases of the SO, respectively. Figure 4.2 depicts for

February 1983 the monthly mean OLR in panel (a), the streamfunction and velocity
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OLR PLOT FOR 2/83 (a)

Figure 4.2. Monthly mean OLR (a), 200 mb streamfunction (b) and velocity
potential (c) with OLR anomaly superimposed for February 1983, as well as PE
simulations averaged for days 60-74 for the streamfunction (d) and velocity potential
(e). Shading for OLR described in text. Contours intervals are 0.5 x 10" m?s™' in
(b,d), and 1 x 10° m?s™! in (c,e). Maximum wind value in (e) of 3.35 ms™' near
75° S, 157° W.
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potential anomalies with OLR anomalies superimposed are in panels (b) and (c),
respectively. The primitive equation model was run by forcing with a heating rate
in °K day~' which is proportional to the negative OLR anomaly ((OLR anomaly -
240) / 10). The model is initialized and relaxed to the annual zonal wind average as
described in Chapter 3. The 15 day averaged model response in the streamfunction
and velocity potential are shown in panels (d) and (e), respectively. Shading for
the OLR in (a) indicates areas < 200 W m~? (dark), 200-220 Wm~? (heavy dots),
and 220-240 Wm™? (medium dots). The OLR anomaly in (b) and (c} is shaded
with heavy dots in areas with values < —20W m~? and with medium dots for values
> 20W m™%. The same shading will be seen in Figs. 4.3, 4.9 and 4.10.

Three main regions of convection are seen in Fig. 4.2a; one over south central
Africa, a second is the ITCZ which straddles the equator in the central Pacific,
and the third area over central South America. The departure of the monthly
average from the annual mean is shaded in Fig. 4.2b,c with anomalous low OLR
values (representing mid-atmospheric heating) highlighted with dark shading. The
streamfunction anomaly exhibits two well defined circulation centers poleward of
the Pacific heating anomaly. Though a similar anticyclonic response is predicted
by the study of Gill (1980), the observed streamfunction and OLR anomalies do
not exhibit the longitudinal shift typical of Gill's model. The observed longitudinal
phasing of vhe anticyclonic centers is captured on the PE response to the heating
anomaly (Fig. 4.2d)

The main divergent outflows which are perpendicular to the gradient of the
velocity potential shown in Fig. 4.2c appear in the PE integrations (Fig. 4.2e).
During February 1983 minimum OLR values are found at about 150° W while S5Ts
larger than 29° C are found east of 145° W at this time and surface westerly wind
anomalies extend from the dateline to the South American coast at the equator

(Philander 1990). The maximum westerly wind anomaly is found at about 150° W,
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in the location of maximum heating. At the upper levels this is manifested in
easterly anomalies in the central Pacific. This feature is well reproduced in the PE
simulations (Fig. 4.2d). The SH wave train that appears to emanate from the Pacific
convective center also appears in the PE simulation. The model did not reproduce
the divergent outflow off the coast of North America. The reasons for this modei’s
strong response at the very high latitudes need to be further investigated.

Similar features are found in Fig. 4.3 for February 1985 during the cold phase of
the SO. The areas of convection over central Africa and South America are essen-
tially unchanged; however, the convection areas in the central Paciﬁc‘, implied via
the OLR, are much further west, over northern Australia, the maritime continent,
and the Indian Ocean. During this phase a Rossby top wave train exists, which
extends from about 145° E into North America. This wave train is also seen in
the PE simulations although it is displaced about 15° northward from the observed
field. This displacement is consistent with the PE simulations of the meridional
outflows over the maritime continent, which are found about 15° further north in
the simulations than in the observations (Fig. 4.3d).

Further information can be gleaned from examination of the vertical mode
structure of the zonal and meridional rotational wind. These are shown in Figs. 4.4
through 4.7 for February 1983/85 for the monthly averages.

The total vertical variability of the zonal rotational wind, shown in Fig. 4.4a,
stretches almost continuously around the NH with a maximum north of the anomaly
in the central Pacific. The SH response is similar, but more diffuse with maxima
between 30° to 60° S associated with the OLR anomalies in the tropics. It is readily
apparent from Fig. 4.4b that the external mode accounts for most of the variability
in the zonal rotational wind north of about 15° N and south of 30° S. Also, note
the concentration in the tropics of the negative bands. All but modes four and five

are positive at 0 = 0.2 so that the negative regions indicate areas of easterly winds
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OLR PLOT FOR 2/65 (a)

Figure 4.3. Monthly mean OLR (a2}, 200 mb streamfunction (b) and velocity
potential (c) with OLR anomaly superimposed for February 1985, as well as PE
simulations averaged for days 60-74 for the streamfunction (d) and velocity potential
(e). Shading for OLR described in text. Contours intervals are 0.5 x 10" m?s™' in
(b,d) and, 1 x 10° m*s™" in (c,e). Maximum wind value in (e) of 3.18 ms™' near
75° S, 113° W.
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Figure 4.4. Total root mean square value (a) and normalized modes one (b), two
(c), and three (d) for February 1983 zonal rotational wind. Mode contributions
in (b-d) are normalized using the total root mean square value in (a). Contour
interval in (a) 5 ms~! with light shading in area of 10~20 ms~', medium shading
for 20-40 ms~', and heavy shading for 40-60 ms~'. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regious < -0.50.
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Figure 4.5. Total root mean square value (a) and normalized modes one (b), two (c},
and three (d) for February 1983 meridional rotational wind. Mode contributions
in (b-d) are normalized using the total root mean square value in (a). Contour
interval in (a) 2.5 ms™! with light shading in area of 5-10 ms™', medium shading
for 10-15 ms™!, and heavy shading for 15-20 ms™'. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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Figure 4.6. Total root mean square value (a) and normalized modes one (b), two
(c), and three (d) for February 1985 zonal rotational wind. Mode contributions
in (b-d) are normalized using the total root mean square value in (2). Contour
interval in (a) 5 ms™! with light shading in area of 10-20 ms™', medium shading
for 20-40 ms~!, and heavy shading for 40-60 ms~'. Contour interval i:. (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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Figure 4.7. Total root mean square value (a) and normalized modes one (b), two (c),
and three (d} for February 1985 meridional rotational wind. Mode contributions
in (b-d) are normalized using the total root mean square value in (a). Contour
interval in (a) 2.5 ms~! with light shading in area of 5-10 ms™', medium shading
for 10~15 ms~', and heavy shading for 15-20 ms~'. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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for the modes one, two, and three, which contribute most to the vertical structure.

In Fig. 4.5a there are two sets of “bull’s-eyes” in the tropical meridional rota-
tional wind. The first is between the equator and 30° N over the southwestern
US and Central America, and the second is between 30° S and the equator in
the eastern Pacific, off the west coast of South America. These features of the
monthly averages are similar to those implied by the streamfunction anomalies in
Fig. 4.2b. As with the zonal component, the second and third modes, a signature
of convection, are found concentrated between 15° N and 30° S.

In the changes of the SO phases between 1983 and 1985, the center of convection
shifts from the central Pacific to the maritime continent, as shown in the OLR field.
The major difference in the cold phase variability (Fig. 4.6a) is the break in the
NH over the eastern Pacific. This is reflected in the mode contributions from first,
second, and third modes. All three modes show the signature of the SPCZ between
90° E and the dateline. Also typical of the cold phase, the maximum over North
America is further north and westerlies at 200 mb are present over the eastern
Pacific in the tropics. During the cold phase the internal modes extend further
poleward over the eastern Pacific, off the west coasts of North and South America.

The vertical structure of the meridional rotational wind also reflects the dif-
ferences between the warm and cold phases as seen by comparing Fies. 4.5 and
4.7. There is little of the total variability accounted for in the tropics and the
PNA pattern is displaced towards the west (see Fig. 4.7a). This shift of the PNA
pattern with the tropical convection indicates a sensitivity of the Rossby wave trains
to the longitudinal location of the tropical heating. This appears to be different
from the conclusions reached by Sardeshmukh and Hoskins (1988) who argued that
the Rossby wave source, created through the advection of vorticity by the divergent
wind, primarily depends on the location of the subtropical jet stream. In particular,

the tight vorticity gradients associated with the Asian subtropical jet would render
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the Rossby wave source relatively insensitive to the precise locations of the heating
anomalies. The current results may be reconciled with this interpretation, if the
subtropical jet streams are considered to be part of the basic state rather than part
of the atmospheric response to the heating anomaly. In this case, the westward shift
of the PNA pattern with the tropical convection may be ascribed to the westward
shift of the subtropical jet. Nevertheless, the PE response to the tropical heating
clearly indicates that both the westerly displacement of the subtropical jet and
mid-latitude wave train position depends on the location of the tropical heating.

Internal structures are found to have a more important role during the cold
phase than during the warm phase of the ENSO episode. This is consistent with
the analysis of ENSO events by Wang (1992) who finds atmospheric flow both in
the free atmosphere and boundary layer to be controlled by the convective heating
during this phase. He also finds that changes in the vertical structure of the ENSO
anomalies for the cold and warm phases are similar to the longitudinal variations
of vertical structures typical of the equatorial Pacific Ocean. Therefore, it may be
argued that the vertical structure changes observed for the cold/warm phase are
due to the longitudinal migrations of the OLR anomaly.

These changes may be interpreted considering the low relative values of the static
stability over the warm waters of the western Pacific and the relative high static
stability values over the cold waters of the eastern Pacific. Over the western Pacific,
adiabatic cooling is relatively ineffective in compensating for the convective heating,
and mid-atmospheric warming takes place. This excites the internal modes, with
boundary layer convergence driven by the convective overturnings. In contrast,
over the eastern Pacific a well-mixed boundary layer exists under the trade wind
inversion. The equatorial zonal wind responds to the zonal pressure gradients
(induced by SST zonal gradients) and the boundary layer convergence is mostly

due to the meridional wind convergence. It has been shown by Lindzen and Nigam
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(1987) that the latitudinal variation of the Coriolis parameter plays an important
role in producing meridional wind convergence in the boundary layer with boundary
layer westerlies. In this case the convection is in phase with strong boundary
layer westerly winds and the adiabatic cooling associated with rising motion nearly
compensates the warming due to latent heat release. Then there is little or no net
atmospheric warming. This results in a more complex vertical structure at lower

levels with more contribution expected from higher order vertical modes.

4.1.2 1987 — 1989 ENSO

The ENSO event of 1987 was very different from the 1983 even‘. While the
peak for the 1983 ENSO occurred in February 1983, the 1987 event did not reach
its maximum until May 1987 and differed in amplitude (see Fig. 4.8). Similarly,
the duration of this ENSO was on the order of 244+ months, versus 12-18 months
for the former.

A direct comparison of the peak warm phases would, therefore, be difficult
because of the different seasonal timing of the two episodes. However, the SO Index,
upper level flow patterns, and convective activity during the NH winter season were
similar to those of other ENSO events and indicate that all characteristics of the
warm phase are present by February 1987. By using the same months for both the
warm and cold phase, a better comparison can be made without the interference
of the seasonal cycle. The atmospheric response to tropical heating can been seen
in the streamfunction standing wave and velocity potential anomaly fields (Fig.
4.9} consistent wi.n that of previous figures. Positive/negative values in the
streamfunction field coincide with negative/positive values of OLR anomalies. The
velocity potential anomaly field is much weaker during this period, exhibiting a

wavenumber one in the tropics, but the general relationship of divergent winds —
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Figure 4.8. Five-month running mean of the sea level pressure anomalies at Darwin
(dashed) and Tahiti (solid). Taken from Climate Diagnostics Bulletin, January
1989, No. 89-1, US Department of Commerce.

flowing across the gradient from regions of high OLR into regions of low OLR —
still holds.

OLR anomalies are not included in Fig. 4.10. A minor problem in either the
data or the processing, results in unusually high values on the equator between ~
100° to 150° E (see Fig. 4.10a). However, from the pattern of the OLR, the centers
of the negative anomalies can be inferred to be in much the same location as seen
in Fig. 4.3. A wave train in the streamfunction field can be seen emanating from
the OLR maximum over the maritime continent, reminiscent of February 1985.
The general pattern of the velocity potential anomaly, however, looks more like
that of February 1983. This again points to the high degree of variability between
individual ENSO events.

The vertical structure of the warm phase for 1987 has features both similar and




OLR PLOT FOR 2/87

138

-

Figure 4.9. Monthly mean OLR (a), 200 mb streamfunction (b) and velocity
potential (c) with OLR anomaly superimposed for February 1987. Shading for
OLR described in text. Contours intervals are 0.5 x 10° m?s~’ in (b) and 1 x 10°

m?s~!

in (c).
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OLR PLOT FOR 2/89 . ( a)

30N

€Q

305

Figure 4.10. Monthly mean OLR (a), 200 mb streamfunction (b) and velocity
potential (c¢) with OLR anomaly superimposed for February 1989. Shading for
OLR described in text. Contours intervals are 0.5 x 107 m*s™' in (b) and 1 x 10°
m?s™! in (¢).
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dissimilar to those of 1983. As stated previously, some of the dissimilarity may be
due to the difference in the timing of maximum amplitude of the ENSO events (May
87 vs. February 83). The external mode contribution in the zonal rotational wind
(Fig. 4.11b) is again significant over most of the globe, with the exception of the
eastern tropical Pacific. The -~sponse in the internal modes (Fig. 4.11¢,d) reflect
the migrating convection. The pattern of the second mode is unlike that for the 83
warm phase in that the easterly and westerly winds are confined to the western and
eastern Pacific, respectively, instead of a belt of tropical easterlies stretching across
the tropical Pacific and straddled by westerlies. It is also interesting to note the
strong response at high latitudes in the external and first internal modes. These
could be indicative of the influence of the stratospheric polar jets being felt in the
upper troposphere. The first internal mode possesses a vertical profile that rapidly
increases with height, necessary for the structure of the stratospheric jet.

The vertical structure of the meridional rotational component (Fig. 4.12) is
similar to that of February 1983. The vertically reversing circulation of the mode
two/three combination is seen off the coast of South America. Additionally, the shift
from internal to external modes occurs in most locations not only longitudinally,
but latitudinally as well.

This is also seen in the cold phase of this ENSO event. The pattern of the
zonal rotational wind in Fig. 4.13 looks nearly identical to that February 1985.
The exceptions are the strength of the internal modes at high latitudes and the
extent of the vertically reversing mode three in the central and eastern Pacific.
The meridional flow (Fig. 4.14) depicts more structure in the tropics that any other
period, except that of February 1983, with the strongest responses at high latitudes.

Internal modes on smaller zonal scales for the meridional component (i.e. at much
higher wavenumbers), particularly in the tropics.

Up to this point, the focus for El Nifio years has been on the excess heating
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Figure 4.11. Total root mean square value (a) and normalized modes one (b), two
(c), and three (d) for February 1987 zonal rotational wind. Mode contributions
in (b-d) are normalized using the total root mean square value in (a). Contour
interval in (a) 5 ms™! with light shading in area of 10-20 ms™', medium shading
for 20-40 ms™', and heavy shading for 40-60 ms~'. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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Figure 4.12. Total root mean square value (a) and normalized modes one (b), two
(c), and three (d) for February 1987 meridional rotational wind. Mode contributions
in (b~d) are normalized using the total root mean square value in (a). Contour
interval in (a) 2.5 ms™' with light shading in area of 5-10 ms~’, medium shading
for 10-15 ms™', and heavy shading for 15-20 ms~'. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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Figure 4.13. Total root mean square value (a) and normalized modes one (b}, two
(c), and three (d) for February 1989 zonal rotational wind Mode contributions
in (b-d) are normalized using the total root mean square value in (a). Contour
interval in (a) 5 ms~! with light shading in area of 10-20 ms~', medium shading
for 20-40 ms™!, and heavy shading for 40-60 ms~'. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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Figure 4.14. Total root mean square value (a) and normalized modes one (b), two
(¢), and three (d) for February 1989 meridional rotational wind. Mode contributions
in (b-d) are normalized using the total root mean square value in (a). Contour
interval in (a) 2.5 ms™! with light shading in area of 5-10 ms™!, medium shading
for 10-15 ms™!, and heavy shading for 15-20 ms~!. Contour interval in (b)-(d) is
0.25 with heavy shading for areas > 0.50 and light shading for regions < -0.50.
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inferred from the OLR and the resulting Rossby waves emanating from the tropics
and their associated vertical structure. However, this heating tends to strengthen
the Hadley Cell, as seen in the velocity potential field of Figs. 4.2¢, 4.3¢, 4.9¢ and

4.10c. Using a simple form of the u-momentum equation,

di
;i-[——-fﬁzo, (4.1)

and the conservation of angular momentum, it is apparent that any increase in
the strength of the Hadley Cell will lead to an increase in the subtropical zonally-
averaged wind. The impact of the 1983 ENSO event on the zonally-averaged wind
is shown in Fig. 4.15.

Because the Hadley Cell is strongest in the winter hemisphere, the eflect will
be most pronounced north of the equator at this time. The difference between the
warm and cold phase is on the order of 15 ms~' between 20-30° N. Outside the
tropics, differences between the two phases are smaller. Within the framework of
linear theory, excitation of waves on a constant basic state depends on the nature
of the forcing. Figure 4.15 shows no anomalous zonally-averaged zonal wind at
latitudes with significant orographic relief. We may tentatively conclude, within this
interpretation, that the observed anomalous patterns in the extratropics may not
be directly linked with orographic forcing, and are, instead, more directly related
to tropical forcing which changes from the warm to cold phase of the ENSO. This
is also consistent with the conclusions already stated in conjunction with the PE
model integrations. Although the magnitude does not approach that of the NH,
the effect of the tropical forcing can also be seen in the SH.

In summary, this section has discussed the vertical structure of the warm and
cold phase of the ENSO episodes, linking the more dominant contributions of the
lower vertical modes to the vertical structure during the cold phase of the oscillation

to the location of the convection over the warm pool of the western Pacific. Also,
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Figure 4.15. 200 mb zonal wind representing the warm phase of February 1983
(solid), the cold phase of February 85 (short dashed), and their difference {83 -
85](medium dash).

the longitudinal shift of the subtropical jet and the extratropical wave patterns were
linked to the observed longitudinal shifts in convection. In the next section we focus

on the third scale of pronounced convective variability; the intraseasonal oscillation

and consider its dependence on the seasonal cycle and interannual variations.

4.2 Intraseasonal Oscillations

The 30-60 day oscillation, and related slow oscillations of the tropics and ex-
tratropics have received increased attention since the early papers of Madden and
Julian (1971, 1972) (e.g., Krishnamurti and Gadgil 1985; Weickmann et al. 1985;
Lau and Chan 1985; Knutson et al. 1986; Nogués-Paegle et al. 1989; Ghil and Mo
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1991a,b) and several theories about its origin and maintenance have been offered
(e.g., Yamagata and Hayashi 1984; Chao 1987; Lau and Peng 1987; Emanue] 1987;
Neelin et al. 1987). Several of these studies have pointed out the existence of
a dominant wave one in the tropical velocity potential. The study of Murakami
(1988), among others, points out the erratic behavior of the 30-60 day oscillation,
with periods of well defined easterly propagation associated with pronounced extra-
tropical response, embedded in periods of stagnant or irregular zonal propagation.
In contrast, Liebmann and Hartmann (1984) conclude that on this time scale the
tropics do not influence mid-latitudes in a systematic fashion. The recent study
of Gutzler and Madden (1989) has described this oscillation with a “two-regime”
character in the global tropics. Across the western Pacific and Indian Ocean the
oscillation is found during all seasons and it is coupled to convection. In other
locations, the oscillation is present only in the upper troposphere, it is seasonally
dependent (maximizing during boreal winter) and it is not coupled with convection
~— their “dry” regime. The purpose of this section is to isolate cases when the
“convective” regime is well defined. This is done based on the wave one component

of the upper tropospheric computations of the velocity potential.

4.2.1 Equatorial Wave One Statistics

As mentioned, from year to year the intraseasonal oscillations exhibit large
variations in phase, amplitude and frequency. Even within the same year, the 30-60
day oscillations contain short-term, irregular high-frequency variations. To see this,
the pentad values of the amplitude and phase of the 200 mb velocity potential for
wavenumber one, averaged between 5° N to 5° S, were plotted on a dial diagram
for each season for the years 1982 through 1988. The annual maximum values for
each season are included in Table 4.1. The amplitude is strongest during the boreal

summer, with a secondary maximum during winter. The minima occur during
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the spring and fall transitions. Maximum summer amplitudes are found between
116° and 153° E, within the convective region of Gutzler and Madden (1989).

With the exception of the El Nifio years, the 30-60 day oscillation signal in the
OLR data of Lau and Chan (1986) disappears east of the dateline. However, with
the ENSO, as precipitation migrates away from the maritime continent into the
central Pacific, the 30-60 day signal moves across the dateline, to the west coast
regions of North/South America. As a result, over the last few years observational
studies have led researchers to try to establish a connection between the 30-60
day oscillation and ENSO (e.g., Lau and Chan, 1985, 1986, 1988). The statistics
presented in Table 4.1 do not reflect Lau and Chan’s (1988) results which suggest
an intensification of the 30-60 day oscillation prior to the onset and suppression
during the decay phase of the ENSO.

The movement and variability of these impulses can also be seen in the 200 mb
velocity potential field, averaged between 5° N to 5° S (Figs. 4.16, 4.17, 4.18).
Examination of the annual departures of wave one components to the xa., reveals
that the 30-60 day oscillation signal is most easily identifiable during the months
of March, April, and May (Fig. 4.16), taking an average of 11 pentads, or 55 days
to circle the globe. During JJA, the x,,, exhibits a dipole structure, and like the
OLR, impulses generated in the Indian Ocean do not persist past 180°. During the
last months of the year, the impulses, for the most part, go full circle around the
globe, but at an average speed of 40 days. These three distinct patterns in the 200
mb velocity potential were composited to examine global patterns at the times of
pronounced convection for different seasons. Although only three pentads are used
for each composite, the oscillations are chosen over different years so as to be in

phase with one another.
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4.2.2 Global Departures from the Annual Mean

Three composites were formed for the three different phases of the 30-60 day
oscillation as discussed above; pentad 22 to represent the transition season, pentad
40 to represent the summer monsoon, and pentad 67 to represent the boreal winter.
The annual mean has been removed to filter out interannual variations discussed
in the previous section. The remaining “anomalies” contain both seasonal and
intraseasonal signals. In Chapter 3, the extent to which the seasonally varying
tropical convection may be invoked to explain the observed global response on an
annually-averaged basic state was discussed. In the previous section we discussed
the interannual flow variations and interpreted the results in terms of propagation
of ENSO anomalies (annual average removed) in the same basic state. In the
present section, a different approach is taken. We consider now, for each season,
a composite of cases with active tropical convection for each season. Because
seasonal changes are strongly modulated by the intraseasonal oscillations in the
tropics we use instances with well defined “convective” phases to select cases for
the composites, and consider deviations from that year’s average. We study these
composites to assess whether the added signal of the intraseasonal oscillation to the
seasonal signal modifies our previous conclusions.

The same relationships found earlier in Chapter 3 for seasonal variations in
the streamfunction perturbation, velocity potential anomaly, and OLR anomaly
in relation to the warm and cold phases of ENSO still hold for the composite
pentads (Figs. 4.19, 4.20, 4.21). Excess heating, inferred from the negative
OLR anomalies, force a response in the streamfunction and velocity potential fields
at 200 mb. In the composite for pentad 22 (see Fig. 4.19) the main sources of
heating in the tropics are over scuthern Africa, the eastern Pacific, and stretching
across the Atlantic from the east coast of South America to west Africa. The ITCZ

and summer monsoon have yet to reach their peak and the SPCZ is weakening as
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Figure 4.19. Streamfunction (a) and velocity potential (b) anomalies with OLR
anomalies superimposed for composite pentad 22. OLR anomaly shading describe
in text. Contours in (a) every 0.5 x 10" m?s~' and in (b) every 1 x 10° m*s~".
Maximum value of divergent wind in (b) of 4.5 ms™! near 3° N, 48° E.
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(a)

Streamfunction Perturtation and OLR Anomaly
200 hPa Composite for Pentad 22

Aoy

“3
s~

— -

B L I

e

R

Py

s <
Al i
S 4 T

-
<.

cnnvasrerfrontra,uriigfona,
reann,

AT

PRI
cosoplangnn

R IR

SON

90U

180

90E

(b)

Velocity Potential and Divergent Wind Anomaly
200 hPa Composite for Pentad 22

PRy pOte

Q0N

603

903

il

180

S0E




169

Figure 4.20. Streamfunction {a) and velocity potential (b) anomalies with OLR
anomalies superimposed for composite pentad 40. OLR anomaly shading describe
in text. Contours in (a) every 0.5 x 10" m?s™" and in (b) every 1 x 10° m*s™".
Maximum value of divergent wind in (b) of 4.7 ms™' near 3° N, 34° E.
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Figure 4.21. Streamfunction (a) and velocity potential(b) anomalies with OLR
anomalies superimposed for composite pentad 67. OLR anomaly shading de-
scribe in text. Contours in (a) every 0.5 x 10 m2s™! and in (b) every 1 x 10°

m?s~! Maximum value of divergent wind ir (b) of 3.4 ms~! near 13° N, 87° E.
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Streamfunction Perturbation and OLR Anomaly (a)
200 hPa Composite for Fentad 67
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it moves to the northwest. The resulting flow, shown in the divergent winds, is
correspondingly weak.

By pentad 40 (Fig. 4.20), the Asian monsoon is in full swing, and both the
ITCZ and convective zone over Central America are active. The strongest positive
perturbation in 9 is seen over southwest Asia and to a lesser extent over central
South America. Large meridional wind anomalies are evident in the divergent wind
associated principally with the monsoon, adding to the strength of the Hadley Cell
in the Southern Hemisphere. While the Asian monsoon dominates in areal extent,
each of the convective regions exhibits wind anomalies of almost equal magnitude.
Corparison of Fig. 4.20b with Fig. 3.3d reveals some differences from those of the
decadal July average, notably in the convection center just west of the dateline and
the convergence center east of South America at about 30° S. These differences are
considered here to be the signature of the intraseasonal oscillation, though, they
may also be due to sampling fluctuations.

The wind anomalies have decreased substantially by pentad 67 (Fig. 4.21) as
mid-year convection activity subsides in the NH. The convective anomalies have
changed from three coherent centers into scattered spots either side of the equator.
As would be expected, the response is likewise disorganized and weak, and in a much
higher wavenumber pattern than the composite for pentad 40. Over South America,
the South Atlantic convergence zone is more evident than in the January average,
which shows most of the convection over the Bolivian Plateau. The anomaly of
OLR and divergent wind in the SH close to the dateline indicates an eastward
displacement of the SPCZ. The composites for pentad 40 and 67 indicate, in
general, convection enhancements in regions where convection is found on seasonal
averages. If this result holds for a larger number of composites, it would suggest a
modulation of the seasonal cycle by the intraseasonal oscillation with amplification

of the seasonal convection signature over the global tropics during the “convective”
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phase of the oscillation.

4.2.3 Vertical Structure of Divergent Winds

Next, the contribution of the divergent wind for each mode at ¢ = 0.2 (~ 200
mb) was calculated for each of the composite pentads using the vertical structure

components in the following manner.

XI_, = "(0) ¥ (4.2)

=2

where X is one of the horizonal divergent wind components, n is the vertical mode
number, and 7 is the vertical structure function for the given mode number and ¢
level.

The composite for pentad 22 (see Fig. 4.22) has little contribution from the first
internal mode at 200 mb, but very strong inputs from the higher internal modes, as
seen in 4.21b-d. This is consistent with the transition season. Typically. the ITCZ
at this time is diminishing in the western Pacific and the SPCZ has not yet fully
developed. Convective activity is present, as represented by the OLR anomalies,
but not throughout the depth of the tropics, hence, the lack of a strong mode two
contribution. The only regions indicating deep convective overturning are in the
western Indian Ocean, western Australia, and over the maritime continent.

The change in the depth of tropical convection is readily apparent in the com-
posite of pentad 40 (Fig. 4.23). The summer monsoon is well established and
significant divergent winds are seen emanating from the OLR anomaly over India.
Throughout the tropics each of the internal modes makes a substantially stronger
contribution than has been seen previously for pentad 22. There is also an appre-
ciable difference in the vertical structure of the divergent winds emanating from the
Indian monsoon region compared to those due to the intraseasonal oscillation signal

referred to previously. Although the former reflects deep convection by modes two
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Figure 4.22. OLR anomaly and vertical mode contribution to divergent wind
anomealy at o = 0.2 for composite of pentad 22 for (a) mode 2 (first internal mode),
(b) mode 3, (c) mode 4, and (d) mode 5. OLR dark shading for areas < -20 Wm~?,
and light shading for areas > 20 W m~2. Divergent winds only shown when in excess
of 0.5 ms~'. Maximum wind values are 0.6 ms~' near 3° 5, 138° E in (a), 1.7 ms™'
near 5° N, 105° W in (b), 1.6 ms~' near 8° N, 8° E, and 1.2 ms™' near 3° N, 48° E.
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Figure 4.23. OLR anomaly and vertical mode contribution to divergent wind
anomaly at ¢ = 0.2 for composite of pentad 40 for (a) mode 2 (first internal mode),
(b) mode 3, (c) mode 4, and (d) mode 5. OLR dark shading for areas < -20 Wm™?,
and light shading for areas > 20 W m~2. Divergent winds only shown when in excess
of 0.5 ms~!. Maximum wind values are 1.3 ms™' near 8° N, 53° Ein (a), 2.2 ms™'
near 30° S, 15° W in (b), 1.2 ms~! near 18° N, 70° E, and 1.1 ms™' near 10° N,
70° E.
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and three, the intraseasonal divergent winds emanating from the anomaly center
west of the dateline, as well as those converging off the eastern coast of South
America, exhibit a dominant mode three structure. This indicates a lower level of
maximum vertical motion.

As the summer monsoon subsides and convective activity decreases over southern
Asia, the first internal mode contribution becomes weaker. By pentad 67 (Fig. 4.24)
its presence is lacking throughout the tropics except for a small region over southeast
Asia. At this time, the ITCZ has weakened over the western Pacific and the SPCZ
is intensifying. This is seen in the OLR and divergent wind anomalies in the
southwestern Pacific for the higher internal modes three through five. A broad area
of convergent winds extends from 30° N-30° S, stretching longitudinally across the
tropics in the eastern Pacific. This decomposition also shows that the intensification
and displacement of the seasonal cycle due to the intraseasonal oscillation signature
appears dominantly in mode three, as was the case during boreal summer.

The composite pentads, shown in Figs. 4.22 through 4.24, demonstrate the
consistency of the OLR data and the vertical projection. The fact that the annusl
average was removed to show the intraseasonal variability in the OLR does have
meaning because the divergent wind anomalies converge into the areas of relative
cooling at this level. This can be seen even with many of the small scale changes,
consistent with what would be expected in terms of rising and sinking motions in
relation to areas of heating and cooling.

Differences are also found in the vertical structure of the longitudinal and merid-
ional overturnings. This is seen in pentad 22 where the divergent winds in the
eastern Pacific show a strong meridional component for mode three, yet they are
intensely zonal for mode four. Similarly for pentad 40, the central Pacific displays a
strong zonal mode three, and a meridional mode five and even further east, during

pentad 67, off the coast of Australia there is again a strong zonal mode three and
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Figure 4.24. OLR anomaly and vertical mode contribution to divergent wind
anomaly at o = 0.2 for composite of pentad 67 for (a) mode 2 (first internal mode),
(b) mode 3, (c) mode 4, and (d) mode 5. OLR dark shading for areas < -20 Wm~?,
and light shading for areas > 20 W m™2. Divergent winds only shown when in excess
of 0.5 ms™!. Maximum wind values are 0.7 ms™! near 10° S, 104° E in (a), 1.7
ms~’ near 28° N, 160° E in (b), 1.2 ms™! near 25° N, 127° E, and 1.2 ms™' near
15° N, 81° E.
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a meridional mode five.

In summary, tropical convection shows a preference of low-frequency variability
in the seasonal, interannual, and intraseasonal time scales. On the interannual scale,
the ENSO episodes display a vertical composition which differs during the warm and
cold phases with more contribution by lower modes during the cold phase. Model
integratior- .ompleted in the same fashion as described in the previous chapter,
are consistent with observations in that wave trains and zonal wind maxima move
westward from the warm to the cold phase of the ENSO anomaly. Finally, seasonal
composites show a link between the seasonal cycle and the 30-60 day oscillation.
In general, when the convective phase of the intraseasonal oscillation is strong
compared to the annual average, then the seasonal couvective pattern is intensified.
A more complete discussion, tying together the findings of this and the previous

chapter, follows.




CHAPTER 5

DISCUSSION AND CONCLUSIONS

This research presents findings on the three important low-frequency sub-climatic
time scales in the pattern of atmospheric variability in the tropics; the seasonsl,
interannual, and intraseasonal cycles. This is done for the first time based on a
relatively long, coherent data set consisting of 10 years of ECMWF operational
analyses. Some of the results confirm those obtained previously by other authors
using more limited data sets. This includes the discussion of the zonally-averaged
seasonal cycle and its connection with the seasonal migration of tropical heating.
Zonal winds are seen to increase during the hemispheric winter, though the SH
winds never approach the magnitude of those in the NH. This holds true for the
meridional circulation as evident in the strength of the Hadley cell. When OLR
values are examined, the regions of low level convergence and upper level divergence,
indicated in the meridional wind, coincide with the convective areas.

The background on stationary waves has also been reported by others. The
waver reach maximum amplitude near 200 mb with those in the NH exhibiting more
pronounced seasonal variability and larger amplitudes. The asymmetric component
of the geopotential height also possesses westward tilt with height which at high
and mid-latitudes could be caused by topographically forced waves propagating
vertically. The horizontal tilt of geopotential height wave is deduced from the
momentum transport to be from southwest to northeast at mid-latitudes and from

northwest to southeast at high latitudes. Also present is a vertical reversal in
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the stationary wave, indicative of mid-atmospheric heating, such as by latent heat
release. This vertical profile is {ound prin<ipally in the NH tropics during mid-year
(JJA) and to a lesser extent over tropical South America during austral summer
(DJF).

New findings on the seasonal cycle come from the decomposition of the wind
into rotationsl and divergent components and then projecting these winds onto a
vertical structure function. There is a pronounced change in the vertical struc-
ture of the rotational wind planetary waves from vertically reversing winds in the
tropics, to equivalent barotropic profiles in the extratropics. The latitudinal shift
from one structure to the other taken place abruptly, in most cases within 10° of
the convection. The seasonal evolution of the vertical structure of the planetary
waves in the divergent and rotational wind components is seen for the first time.
Specifically, the results show similar seasonal timing in the onset of the maxima
of the zonal equivalent barotropic waves in the extratropics compared to those
of the meridional divergent wind waves with deep vertical structures. Though
such relationships have been previously found for zonally-averaged circulations, the
seasonal linkages between the divergent and rotational wave patterns based on an
extensive data set is believed to be new.

Furthermore, it is of interest that the deepest vertical mode for meridional
divergent waves is found mostly confined to the summer hemisphere for waves two
and three, while the third vertical mode exhibits more of a symmetric structure
about the equator, with important contributions into the winter hemispheres. This
implies that adequate simulations of meridional cells need to have sufficient vertical
resolution to describe convergence at low levels, a rising branch with a high level of
nondivergence (~ 300 mb) and a sinking branch with sinking motions maximizing
at lower levels (~ 500 mb). Differences are also found between the zonal and

meridional divergent wind waves. The largest longitudinal overturnings in the
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zonal divergent winds are found at mid-latitudes whereas meridional divergent
maxima are also found near the equator. Furthermore, because of the important
contribution by the fifth internal mode to the meridional divergent wind, but not
to the zonal divergent wind, the first presents more variability at lower levels.

In an effort to quantity how much of the extratropical structure is in response to
the seasonal cycle of tropical forcing, linear and PE models are run for comparison.
The linear shallow water equation model, using an equivalent depth equal to the
third mode, and Paegle’s (1989) three-level PE model are forced with January
and July heating distributions derived from the averaged OLR ﬁel‘d. The PE
model is intermediate in generality between a full GCM and the linear model
with the advantage of being able to exclude topographical forcing and wave-mean
flow interactions. This is accomplished by initializing the PE model with the
yearly average of the zonally-averaged zonal wind and nudging the zonally-averaged
circulation back to these initial values through the course of the integration. The
PE model is integrated for 90 days and the results are averaged for the last 15
days. At this time the PE integrations are similar to those of the linear model in
the summer hemisphere, and account for 30 to 50% of the wind response. The PE
simulations produce appreciable wave amplitudes in the winter hemisphere, unlike
the linear model for which the response is trapped by equatorial easterlies in the
summer hemisphere.

The PE model integrations produce wave three patterns for January, in response
to the dominant contribution by the heating at this wavelength. This is unlike
observations that show a pronounced wave two during NH winter. This is expected
since the model does not contain orography, a forcing mechanism essential to explain
the observed Nh winter waves. The SH winter model response exhibits the observed
zonal wind structure which spirals southward around the Antarctic continent. Nev-

ertheless, the PE response is longitudinally shifted by about 100° with respect to
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the observations. Close inspection of the simulated divergent outflows reveals that
the meridional divergent wind maxima are also further south than the observations
and may be the cause for the discrepancies. The observed and simulated patterns,
however, are similar enough to warrant the conjecture that, on a seasonal time
scale, about 50% of the observed midlatitude SH waves are due to tropical heating.
This percentage estimate is only valid to the extent that a more complete version of
this PE model adequately simulates atmospheric flows. No statement can be made
in this regard, because no control simulations including the earth orography were
run.

Variations in the interannual and intraseasonal cycle are also linked to the
variations in tropical heating. The vertical structure of the ENSQ episodes differs
during the cold and warm phase. There are more dominant contributions by
the lower vertical modes during the cold phase, when the anomalous convection
is displaced towards the western Pacific, than during the warm phase when the
tropical convection anomaly is over the central and eastern Pacific. These different
structures may be explained by the different air-sea interactive processes acting
in the western and eastern Pacific as discussed by Wang (1992). The effect of the
tropical convection anomaly in the eatratropics was examined with the integrations
of the nonlinear PE model as it was done for the seasonal cycle. Motivation
for these simulations is provided from recent studies that explain extratropical
low-frequency variability by the focussing of energy into preferred locations by
the basic flow inhomogeneities (Simmons 1982; Garcia and Salby 1987; Simmons
et al. 1983; Branstator 1985; Kasahara and Silva Dias 1986). Branstator (1990)
has recently shown that the geographical distribution of low-frequency variance
is mostly due to the three-dimensional structure of the basic state, and that it
is insensitive to the longitudinal placement of the thermal forcing. His results

were obtained by introducing random thermal perturbations in a nine-level linear
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PE model and comparing the response to that of a long GCM simulation. The
interpretation in this case is that the varying basic state acts to trap disturbances
in preferred locations. This conclusion does not consider the role of the external
forcing mechanisms responsible for the time-mean three-dimensional basic state.

The PE model is again forced with the heating derived from OLR values, this
time, for the warm and cold phase convective anomalies of the 83-85 ENSO episode.
As before, these integrations are initialized with the annually-averaged zonal wind,
and the model is continually nudged at each time step so that the zonally-averaged
wind remains constant through the integration. No other forcing mechanisms are
included so that the wave response is due only to the tropical forcing. The PE
response is consistent with the observations in that wave trains and zonal wind
maxima move westward from the warm to the cold phase of the ENSO anomaly.
This result appears to be contrary to the finding of Branstator (1990).

Composites for the departures from annual averages are formed during three
different seasons for cases when the convective phase (Gutzler and Madden 1989)
of the intraseasonal oscillation was strong. The composites show, in general, an
intensification of the seasonal convective patterns. Regions that exhibit convection
in the composite, but not in the seasonal average, have dominant contributions from
higher vertical modes (mostly mode three) than those associated with seasonal
summer convection (mode two for the Indian monsoon). It is also of interest
that different vertical structures are found of the longitudinal and meridional over-
turnings, with the meridional divergent motions displaying contributions by higher
vertical modes than their zonal counterparts during the transition, and the opposite,
during periods of more active convection.

In conclusion, this research has described the vertical structure of the height
and wind fields associated with the seasonal, interannual, and intraseasonal cycles.

Although each time scale contains many dissimilarities when compared to one
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another, they also each contain many similarities, most notably the tie to tropical
convection. The vertical structure of the seasonal cycle and the extent to which
observed global patterns may be explained is based on the seasonal march of
tropical convection. Additionally, the latitude and longitude where the vertical
structure changes from one composed mostly of internal modes into one consisting
primarily of the external mode occurs rapidly and within 10° of the convective
source regions. Finally, through the use of linear and PE models, the tropical
heating is shown to contribute to as much as 50% to SH, and between 30-50% to
NH extratropical vertical structure. As mentioned previously, these percentages
should be considered as tentative until control runs of this PE model including
orography are conducted and shown to adequately simulate the topographically

induced midlatitude stationary waves.
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